X11 Input Extension Protocol Specification

Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Mark Patrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company and Ardent Computer

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. Ardent and Hewlett-Packard make no representations about the suitability for any
purpose of the information in this document. It is provided "as is" without express or implied
warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the *““Software’’), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
s0, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

1.1. Input Extension Overview

This document defines an extension to the X11 protocol to support input devices other than the
core X keyboard and pointer. An accompanying document defines a corresponding extension to
Xlib (similar extensions for languages other than C are anticipated). This first section gives an
overview of the input extension. The next section defines the new protocol requests defined by
the extension. We conclude with a description of the new input events generated by the additional
input devices.

1.2. Design Approach

The design approach of the extension is to define requests and events analogous to the core
requests and events. This allows extension input devices to be individually distinguishable from
each other and from the core input devices. These requests and events make use of a device iden-
tifier and support the reporting of n-dimensional motion data as well as other data that is not
reportable via the core input events.

1.3. Core Input Devices

The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify)
are known as the core input events. All other input devices are referred to as extension input
devices and the input events they generate are referred to as extension input events.

Note

This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. These requests may affect the synchronization of events from extension
devices. See the explanation in the section titled "Event Synchronization and Core
Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation-dependent. Requests are defined that allow client programs to change which physical
devices are used as the core devices.

1.4. Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices.

A client that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the ListInputDevices request, which will return a
list of all devices that can be opened by the X server. A client can then open one or more of these
devices using the OpenDevice request, specify what events they are interested in receiving, and
receive and process input events from extension devices in the same way as events from the X

X Input Extension Protocol Specification X11, Release 6.4

keyboard and X pointer. Input events from these devices are of extension types (DeviceKey-
Press, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify,
etc.) and contain a device identifier so that events of the same type coming from different input
devices can be distinguished.

Any kind of input device may be used as an extension input device. Extension input devices may
have 0 or more keys, 0 or more buttons, and may report 0 or more axes of motion. Motion may
be reported as relative movements from a previous position or as an absolute position. All valua-
tors reporting motion information for a given extension input device must report the same kind of
motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input classes. Server implementors may add new classes of input devices without
changing the protocol requests. Input classes are unique numbers registered with the X Consor-
tium. Each extension input device may support multiple input classes.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

Input events reported by the server to a client are of fixed size (32 bytes). In order to represent
the change in state of an input device the extension may need to generate a sequence of input
events. A client side library (such as Xlib) will typically take these raw input events and format
them into a form more convenient to the client.

1.4.1. Event Classes

In the core protocol a client registers interest in receiving certain input events directed to a win-
dow by modifying that window’s event-mask. Most of the bits in the event mask are already used
to specify interest in core X events. The input extension specifies a different mechanism by
which a client can express interest in events generated by this extension.

When a client opens a extension input device via the OpenDevice request, an XDevice structure
is returned. Macros are provided that extract 32-bit numbers called event classes from that struc-
ture, that a client can use to register interest in extension events via the SelectExtensionEvent
request. The event class combines the desired event type and device id, and may be thought of as
the equivalent of core event masks.

1.4.2. Input Classes

Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to allow new classes of input devices to be defined at a later time without chang-
ing the semantics of these requests. The following input device classes are currently defined:

KEY
The device reports key events.

BUTTON
The device reports button events.
VALUATOR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

X Input Extension Protocol Specification X11, Release 6.4

FOCUS
The device can be focused and reports focus events.

FEEDBACK
The device supports feedbacks.

OTHER
The ChangeDeviceNotify, DeviceMappingNotify, and DeviceStateNotify macros
may be invoked passing the XDevice structure returned for this device.

Each extension input device may support multiple input classes. Additional classes may be added
in the future. Requests that support multiple input classes, such as the ListInputDevices function
that lists all available input devices, organize the data they return by input class. Client programs
that use these requests should not access data unless it matches a class defined at the time those
clients were compiled. In this way, new classes can be added without forcing existing clients that
use these requests to be recompiled.

2. Requests

Extension input devices are accessed by client programs through the use of new protocol requests.
This section summarizes the new requests defined by this extension. The syntax and type defini-
tions used below follow the notation used for the X11 core protocol.

2.1. Getting the Extension Version

The GetExtensionVersion request returns version information about the input extension.

GetExtensionVersion
name: STRING

=>
present: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16

The protocol version numbers returned indicate the version of the input extension sup-
ported by the target X server. The version numbers can be compared to constants defined
in the header file XI.h. Each version is a superset of the previous versions.

2.2. Listing Available Devices

A client that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the ListInputDevices request, which will return a
list of all devices that can be opened by the X server.

ListInputDevices
=>
input-devices: LISTofDEVICEINFO

where

X Input Extension Protocol Specification X11, Release 6.4

DEVICEINFO: [type: ATOM
id: CARDS
num_classes: CARDS
use: {IsXKeyboard, [sXPointer, IsExtensionDevice}
info: LISTofINPUTINFO
name: STRINGS]

INPUTINFO: {KEYINFO, BUTTONINFO, VALUATORINFO}

KEYINFO: [class: CARDS
length: CARDS
min-keycode: KEYCODE
max-keycode: KEYCODE
num-keys: CARD16]

BUTTONINFO: [class: CARDS
length: CARDS
num-buttons: CARD16]

VALUATORINFO: |[class: CARDS
length: CARDS
num_axes: CARDS
mode: SETofDEVICEMODE
motion_buffer_size: CARD32
axes: LISTofAXISINFO]

AXISINFO: [resolution: CARD32
min-val: CARD32
max-val: CARD32]

DEVICEMODE: { Absolute, Relative}

Errors: None

This request returns a list of all devices that can be opened by the X server, including the core X
keyboard and X pointer. Some implementations may open all input devices as part of X initial-
ization, while others may not open an input device until requested to do so by a client program.

¢ The information returned for each device is as follows:

The type field is of type Atom and indicates the nature of the device. Clients may determine
device types by invoking the XInternAtom request passing one of the names defined in the
header file XI.h. The following names have been defined to date:

X Input Extension Protocol Specification X11, Release 6.4

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

The id is a small cardinal value in the range 0-128 that uniquely identifies the device. Itis
assigned to the device when it is initialized by the server. Some implementations may not open
an input device until requested by a client program, and may close the device when the last client
accessing it requests that it be closed. If a device is opened by a client program via XOpenDe-
vice, then closed via XCloseDevice, then opened again, it is not guaranteed to have the same id
after the second open request.

The num_classes field is a small cardinal value in the range 0-255 that specifies the number of
input classes supported by the device for which information is returned by ListInputDevices.
Some input classes, such as class Focus and class Proximity do not have any information to be
returned by ListInputDevices.

The use field specifies how the device is currently being used. If the value is IsXKeyboard, the
device is currently being used as the X keyboard. If the value is IsXPointer, the device is cur-
rently being used as the X pointer. If the value is IsXExtensionDevice, the device is available for
use as an extension device.

The name field contains a pointer to a null-terminated string that corresponds to one of the
defined device types.

* Inputlnfo is one of: KeyInfo, ButtonInfo or ValuatorInfo. The first two fields are common
to all three:

The class field is a cardinal value in the range 0-255. It uniquely identifies the class of input for
which information is returned.

The length field is a cardinal value in the range 0-255. It specifies the number of bytes of data
that are contained in this input class. The length includes the class and length fields.

The remaining information returned for input class KEYCLASS is as follows:

min_keycode is of type KEYCODE. It specifies the minimum keycode that the device will
report. The minimum keycode will not be smaller than 8.

max_keycode is of type KEYCODE. It specifies the maximum keycode that the device will
report. The maximum keycode will not be larger than 255.

num_Kkeys is a cardinal value that specifies the number of keys that the device has.

X Input Extension Protocol Specification X11, Release 6.4

The remaining information returned for input class BUTTONCLASS is as follows:
num_buttons is a cardinal value that specifies the number of buttons that the device has.
The remaining information returned for input class VALUATORCLASS is as follows:

mode is a constant that has one of the following values: Absolute or Relative. Some devices
allow the mode to be changed dynamically via the SetDeviceMode request.

motion_buffer_size is a cardinal number that specifies the number of elements that can be con-
tained in the motion history buffer for the device.

The axes field contains a pointer to an AXISINFO struture.
* The information returned for each axis reported by the device is:
The resolution is a cardinal value in counts/meter.

The min_val field is a cardinal value in that contains the minimum value the device reports for
this axis. For devices whose mode is Relative, the min_val field will contain O.

The max_val field is a cardinal value in that contains the maximum value the device reports for
this axis. For devices whose mode is Relative, the max_val field will contain O.

2.3. Enabling Devices

Client programs that wish to access an extension device must request that the server open that
device. This is done via the OpenDevice request.

OpenDevice
id: CARDS
=>
DEVICE: [device_id: XID

num_classes: INT32
classes: LISTofINPUTCLASSINFO]

INPUTCLASSINFO: [input_class: CARDS
event_type_base: CARDS]

Errors: Device

This request returns the event classes to be used by the client to indicate which events the client
program wishes to receive. Each input class may report several event classes. For example, input
class Keys reports DeviceKeyPress and DeviceKeyRelease event classes. Input classes are
unique numbers registered with the X Consortium. Input class Other exists to report event
classes that are not specific to any one input class, such as DeviceMappingNotify, ChangeDevi-
ceNotify, and DeviceStateNotify.

* The information returned for each device is as follows:
The device_id is a number that uniquely identifies the device.
The num_classes field contains the number of input classes supported by this device.

* For each class of input supported by the device, the InputClassInfo structure contains the fol-
lowing information:

X Input Extension Protocol Specification X11, Release 6.4

The input_class is a small cardinal number that identifies the class of input.

The event_type_base is a small cardinal number that specifies the event type of one of the events
reported by this input class. This information is not directly used by client programs. Instead, the
Device is used by macros that return extension event types and event classes. This is described in
the section of this document entitled "Selecting Extension Device Events".

Before it exits, the client program should explicitly request that the server close the device. This
is done via the CloseDevice request.

A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single CloseDevice request will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, the queued events are released
when the client terminates.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

CloseDevice
device: DEVICE

Errors: Device

2.4. Changing The Mode Of A Device

Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use the SetDeviceMode request. The valid values are
Absolute or Relative.

This request will fail and return DeviceBusy if another client already has the device open with a
different mode. It will fail and return AlreadyGrabbed if another client has the device grabbed.
The request will fail with a BadMatch error if the requested mode is not supported by the device.

SetDeviceMode
device: DEVICE
mode: { Absolute, Relative}

Errors: Device, Match, Mode

status: {Success, DeviceBusy, AlreadyGrabbed }

2.5. Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is changed to Absolute. To
initialize the valuators on such a device, use the SetDeviceValuators request.

X Input Extension Protocol Specification X11, Release 6.4

SetDeviceValuators
device: DEVICE
first_valuator: CARDS
num_valuators: CARDS8
valuators: LISTOFINT?32

Errors: Length, Device, Match, Value

status: {Success, AlreadyGrabbed}

This request initializes the specified valuators on the specified extension input device. Valuators
are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion first_valuator + num_valuators, a Value error will result.

If the request succeeds, Success is returned. If the specifed device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.

2.6. Getting Input Device Controls

GetDeviceControl
device: DEVICE
control: XID

Errors: Length, Device, Match, Value

controlState: {DeviceState }

where

DeviceState: DeviceResolutionState

Errors: Length, Device, Match, Value

This request returns the current state of the specified device control. The device control must be
supported by the target server and device or an error will result.

If the request is successful, a pointer to a generic DeviceState structure will be returned. The
information returned varies according to the specified control and is mapped by a structure appro-
priate for that control.

GetDeviceControl will fail with a BadValue error if the server does not support the specified con-
trol. It will fail with a BadMatch error if the device does not support the specified control.

Supported device controls and the information returned for them include:

X Input Extension Protocol Specification X11, Release 6.4

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
num_valuators: CARDS8
resolutions: LISTofCARD32
min_resolutions: LISTofCARD32
max_resolutions: LISTofCARD32]

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are
returned. For each valuator 1 on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the specified
device has no valuators.

ChangeDeviceControl
device: DEVICE
XID: controlld
control: DeviceControl

where

DeviceControl: DeviceResolutionControl

Errors: Length, Device, Match, Value
=>
status: {Success, DeviceBusy, AlreadyGrabbed }

ChangeDeviceControl changes the specifed device control according to the values specified in the
DeviceControl structure. The device control must be supported by the target server and device or
an error will result.

The information passed with this request varies according to the specified control and is mapped
by a structure appropriate for that control.

ChangeDeviceControl will fail with a BadValue error if the server does not support the specified
control. It will fail with a BadMatch error if the server supports the specified control, but the
requested device does not. The request will fail and return a status of DeviceBusy if another
client already has the device open with a device control state that conflicts with the one specified
in the request. It will fail with a status of AlreadyGrabbed if some other client has grabbed the
specified device. If the request succeeds, Success is returned. If it fails, the device control is left
unchanged.

Supported device controls and the information specified for them include:

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
first_valuator: CARDS
num_valuators: CARDS8
resolutions: LISTofCARD32]

X Input Extension Protocol Specification X11, Release 6.4

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are set. A value of -1 in the resolutions list indicates that
the resolution for this valuator is not to be changed. num_valuators specifies the number of valu-
ators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If a resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression first_valuator + num_val-
uators, a BadValue error will result.

If the request fails for any reason, none of the valuator resolutions will be changed.

2.7. Selecting Extension Device Events

Extension input events are selected using the SelectExtensionEvent request.

SelectExtensionEvent
window: WINDOW
interest: LISTofEVENTCLASS

Errors: Window, Class, Access

This request specifies to the server the events within the specified window which are of interest to
the client. As with the core XSelectInput function, multiple clients can select input on the same
window.

XSelectExtensionEvent requires a list of event classes. An event class is a 32-bit number that
combines an event type and device id, and is used to indicate which event a client wishes to
receive and from which device it wishes to receive it. Macros are provided to obtain event classes
from the data returned by the XOpenDevice request. The names of these macros correspond to
the desired events, i.e. the DeviceKeyPress is used to obtain the event class for DeviceKeyPress
events. The syntax of the macro invocation is:

DeviceKeyPress (device, event_type, event_class);
device: DEVICE
event_type: INT
event_class: INT

The value returned in event_type is the value that will be contained in the event type field of the
XDeviceKeyPressEvent when it is received by the client. The value returned in event_class is
the value that should be passed in making an XSelectExtensionEvent request to receive
DeviceKeyPress events.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease event for each DeviceButtonPress event it receives, it should specify the
DeviceButtonPressGrab event class as well as the DeviceButtonPress event class. This restricts
the client in that only one client at a time may request DeviceButtonPress events from the same
device and window if any client specifies this class.

10

X Input Extension Protocol Specification X11, Release 6.4

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify DeviceButtonPress or DeviceButtonPress-
Grab will cause an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device and
window combination.

A client may also specify the DeviceOwnerGrabButton class. If it has specified both the
DeviceButtonPressGrab and the DeviceOwnerGrabButton classes, implicit passive grabs will
activate with owner_events set to True. If only the DeviceButtonPressGrab class is specified,
implicit passive grabs will activate with owner_events set to False.

The client may select DeviceMotion events only when a button is down. It does this by specify-
ing the event classes Button1Motion through ButtonSMotion, or ButtonMotion. An input
device will only support as many button motion classes as it has buttons.

2.8. Determining Selected Events

To determine which extension events are currently selected from a given window, use GetSelect-
edExtensionEvents.

GetSelectedExtensionEvents
window: WINDOW

=>
this-client: LISTofEVENTCLASS
all-clients: LISTofEVENTCLASS

Errors: Window

This request returns two lists specifying the events selected on the specified window. One list
gives the extension events selected by this client from the specified window. The other list gives
the extension events selected by all clients from the specified window. This information is equiv-
alent to that returned by your-event-mask and all-event-masks in a GetWindowA ttributes
request.

2.9. Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events. If a win-
dow is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that receive a particular extension event.

Client programs may control extension event propagation through the use of the following two
requests.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the do_not_propa-
gate list of extension events for the specified window. This list is maintained for the life of the
window, and is not altered if the client terminates.

ChangeDeviceDontPropagateList
window: WINDOW
eventclass: LISTofEVENTCLASS

11

X Input Extension Protocol Specification X11, Release 6.4

mode: { AddToList, DeleteFromList}

Errors: Window, Class, Mode

This function modifies the list specifying the events that are not propagated to the ancestors of the
specified window. You may use the modes AddToList or DeleteFromList.

GetDeviceDontPropagateList
window: WINDOW

Errors: Window

dont-propagate-list: LISTofEVENTCLASS

This function returns a list specifying the events that are not propagated to the ancestors of the
specified window.

2.10. Sending Extension Events
One client program may send an event to another via the XSendExtensionEvent function.

The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to True in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

SendExtensionEvent
device: DEVICE
destination: WINDOW
propagate: BOOL
eventclass: LISTofEVENTCLASS
event: XEVENT

Errors: Device, Value, Class, Window
2.11. Getting Motion History
GetDeviceMotionEvents
device: DEVICE
start, stop: TIMESTAMP or CurrentTime
nevents_return: CARD32
mode_return: { Absolute, Relative}

axis_count_return: CARDS
events: LISTofDEVICETIMECOORD

12

X Input Extension Protocol Specification X11, Release 6.4

where

DEVICETIMECOORD: [data:LISTofINT32 time:TIMESTAMP]

Errors: Device, Match

This request returns all positions in the device’s motion history buffer that fall between the speci-
fied start and stop times inclusive. If the start time is in the future, or is later than the stop time,
no positions are returned.

The data field of the DEVICETIMECOORD structure is a sequence of data items. Each item is
of type INT32, and there is one data item per axis of motion reported by the device. The number
of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device, which is returned in the mode
variable. If the mode is Absolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum and minimum values for each axis are
reported by the ListInputDevices request.

If the mode is Relative, the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accumu-
lating these relative values.

2.12. Changing The Core Devices

These requests are provided to change which physical device is used as the X pointer or X
keyboard.

Note

Using these requests may change the characteristics of the core devices. The new
pointer device may have a different number of buttons than the old one did, or the
new keyboard device may have a different number of keys or report a different range
of keycodes. Client programs may be running that depend on those characteristics.
For example, a client program could allocate an array based on the number of buttons
on the pointer device, and then use the button numbers received in button events as
indicies into that array. Changing the core devices could cause such client programs
to behave improperly or abnormally terminate.

These requests change the X keyboard or X pointer device and generate an ChangeDeviceNotify
event and a MappingNotify event. The ChangeDeviceNotify event is sent only to those clients
that have expressed an interest in receiving that event via the XSelectExtensionEvent request.
The specified device becomes the new X keyboard or X pointer device. The location of the core
device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either
device is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, or has not previously
been opened via OpenDevice.

To change the X keyboard device, use the ChangeKeyboardDevice request. The specified

13

X Input Extension Protocol Specification X11, Release 6.4

device must support input class Keys (as reported in the ListInputDevices request) or the request
will fail with a BadMatch error. Once the device has successfully replaced one of the core
devices, it is treated as a core device until it is in turn replaced by another ChangeDevice request,
or until the server terminates. The termination of the client that changed the device will not
cause it to change back. Attempts to use the CloseDevice request to close the new core device
will fail with a BadDevice error.

The focus state of the new keyboard is the same as the focus state of the old X keyboard. If the
new keyboard was not initialized with a FocusRec, one is added by the ChangeKeyboardDevice
request. The X keyboard is assumed to have a KbdFeedbackClassRec. If the device was initial-
ized without a KbdFeedbackClassRec, one will be added by this request. The KbdFeedback-
ClassRec will specify a null routine as the control procedure and the bell procedure.

ChangeKeyboardDevice
device: DEVICE

Errors: Device, Match

status: Success, AlreadyGrabbed, Frozen

To change the X pointer device, use the ChangePointerDevice request. The specified device
must support input class Valuators (as reported in the ListInputDevices request) or the request
will fail with a BadMatch error. The valuators to be used as the x- and y-axes of the pointer
device must be specified. Data from other valuators on the device will be ignored.

The X pointer device does not contain a FocusRec. If the new pointer was initialized with a
FocusRec, it is freed by the ChangePointerDevice request. The X pointer is assumed to have a
ButtonClassRec and a PtrFeedbackClassRec. If the device was initialized without a Button-
ClassRec or a PtrFeedbackClassRec, one will be added by this request. The ButtonClassRec
added will have no buttons, and the PtrFeedbackClassRec will specify a null routine as the con-
trol procedure.

If the specified device reports absolute positional information, and the server implementation does
not allow such a device to be used as the X pointer, the request will fail with a BadDevice error.

Once the device has successfully replaced one of the core devices, it is treated as a core device

until it is in turn replaced by another ChangeDevice request, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to

use the CloseDevice request to close the new core device will fail with a BadDevice error.

ChangePointerDevice
device: DEVICE
xaxis: CARDS8
yaxis: CARDS
Errors: Device, Match

status: Success, AlreadyGrabbed, Frozen

14

X Input Extension Protocol Specification X11, Release 6.4

2.13. Event Synchronization And Core Grabs

Implementation of the input extension requires an extension of the meaning of event synchroniza-
tion for the core grab requests. This is necessary in order to allow window managers to freeze all
input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The meaning of
these modes is changed by the input extension. For the XGrabPointer and XGrabButton
requests, pointer_mode controls synchronization of the pointer device, and keyboard_mode
controls the synchronization of all other input devices. For the XGrabKeyboard and XGrabKey
requests, pointer_mode controls the synchronization of all input devices except the X keyboard,
while keyboard_mode controls the synchronization of the keyboard. When using one of the core
grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.14. Extension Active Grabs

Active grabs of extension devices are supported via the GrabDevice request in the same way that
core devices are grabbed using the core GrabKeyboard request, except that a Device is passed as a
function parameter. A list of events that the client wishes to receive is also passed. The Ungrab-
Device request allows a previous active grab for an extension device to be released.

To grab an extension device, use the GrabDevice request. The device must have previously been
opened using the OpenDevice request.

GrabDevice
device: DEVICE
grab-window: WINDOW
owner-events: BOOL
event-list: LISTOfEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

status: Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable

Errors: Device, Window, Value

This request actively grabs control of the specified input device. Further input events from this
device are reported only to the grabbing client. This request overrides any previous active grab
by this client for this device.

The event-list parameter is a pointer to a list of event classes. These are used to indicate which
events the client wishes to receive while the device is grabbed. Only event classes obtained from
the grabbed device are valid.

If owner-events is False, input events generated from this device are reported with respect to
grab-window, and are only reported if selected by being included in the event-list. If owner-
events is True, then if a generated event would normally be reported to this client, it is reported
normally, otherwise the event is reported with respect to the grab-window, and is only reported if
selected by being included in the event-list. For either value of owner-events, unreported events
are discarded.

15

X Input Extension Protocol Specification X11, Release 6.4

If this-device-mode is Asynchronous, device event processing continues normally. If the device
is currently frozen by this client, then processing of device events is resumed. If this-device-
mode is Synchronous, the state of the grabbed device (as seen by means of the protocol) appears
to freeze, and no further device events are generated by the server until the grabbing client issues
a releasing AllowDeviceEvents request or until the device grab is released. Actual device input
events are not lost while the device is frozen; they are simply queued for later processing.

If other-device-mode is Asynchronous, event processing is unaffected by activation of the grab.
If other-device-mode is Synchronous, the state of all input devices except the grabbed one (as
seen by means of the protocol) appears to freeze, and no further events are generated by the server
until the grabbing client issues a releasing AllowDeviceEvents request or until the device grab is
released. Actual events are not lost while the devices are frozen; they are simply queued for later
processing.

This request generates DeviceFocusIn and DeviceFocusOut events.

This request fails and returns:

* AlreadyGrabbed If the device is actively grabbed by some other client.
* NotViewable If grab-window is not viewable.

* InvalidTime If the specified time is earlier than the last-grab-time for the specified device or
later than the current X server time. Otherwise, the last-grab-time for the specified device is
set to the specified time and CurrentTime is replaced by the current X server time.

* Frozen If the device is frozen by an active grab of another client.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

To release a grab of an extension device, use UngrabDevice.

UngrabDevice
device: DEVICE
time: TIMESTAMP or CurrentTime

Errors: Device

This request releases the device if this client has it actively grabbed (from either GrabDevice or
GrabDeviceKey) and releases any queued events. If any devices were frozen by the grab,
UngrabDevice thaws them. The request has no effect if the specified time is earlier than the last-
device-grab time or is later than the current server time.

This request generates DeviceFocusIn and DeviceFocusOut events.

An UngrabDevice is performed automatically if the event window for an active device grab
becomes not viewable.

2.15. Passively Grabbing A Key

Passive grabs of buttons and keys on extension devices are supported via the GrabDeviceButton
and GrabDeviceKey requests. These passive grabs are released via the UngrabDeviceKey and
UngrabDeviceButton requests.

To passively grab a single key on an extension device, use GrabDeviceKey. That device must
have previously been opened using the OpenDevice request.

16

X Input Extension Protocol Specification X11, Release 6.4

GrabDeviceKey

device: DEVICE

keycode: KEYCODE or AnyKey

modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL

grab-window: WINDOW

owner-events: BOOL

event-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}

Errors: Device, Match, Access, Window, Value

This request is analogous to the core GrabKey request. It establishes a passive grab on a device.
Consequently, In the future:

» IF the device is not grabbed and the specified key, which itself can be a modifier key, is logi-
cally pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

* AND no other modifier keys logically are down,

* AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

* THEN the device is actively grabbed, as for GrabDevice, the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for GrabDevice. The active grab is termi-
nated automatically when logical state of the device has the specified key released (independent
of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyMaodifier is equivalent to issuing the request for all possible modifier combina-
tions (incl