XFree86® server 4.x Design (DRAFT)

The XFree86 Project, Inc
13 October 2005

NOTE: This is a DRAFT document, and the interfaces described here are subject to change with-

out notice.

1. Preface

The broad design principles are:

* keep it reasonable

We cannot rewrite the complete server

We don’t want to re-invent the wheel

* keep it modular

As many things as possible should go into modules

The basic loader binary should be minimal

A clean design with well defined layering is important

DDX specific global variables are a nono

The structure should be flexible enough to allow future extensions

The structure should minimize duplication of common code

» keep important features in mind

multiple screens, including multiple instances of drivers

mixing different color depths and visuals on different and ideally even on the same
screen

better control of the PCI device used
better config file parser

get rid of all VGA compatibility assumptions

Unless we find major deficiencies in the DIX layer, we should avoid making changes there.

2. The XF86Config File

The XF86Config file format is similar to the old format, with the following changes:

XFree86® server 4.x Design (DRAFT) 1

XFree86® server 4.x Design (DRAFT) 2

2.1 Device section

The Device sections are similar to what they used to be, and describe hardware-specific informa-
tion for a single video card. Device Some new keywords are added:

Driver "drivername"
Specifies the name of the driver to be used for the card. This is mandatory.

BusID "busslot"
Specifies uniquely the location of the card on the bus. The purpose is to identify
particular cards in a multi-headed configuration. The format of the argument is
intentionally vague, and may be architecture dependent. For a PCI bus, it is some-
thing like "bus:slot:func”.

A Device section is considered “active” if there is a reference to it in an active Screen section.

2.2 Screen section

The Screen sections are similar to what they used to be. They no longer have a Driver keyword,
but an Identifier keyword is added. (The Driver keyword may be accepted in place of the Iden-
tifier keyword for compatibility purposes.) The identifier can be used to identify which screen is
to be active when multiple Screen sections are present. It is possible to specify the active screen
from the command line. A default is chosen in the absence of one being specified. A Screen sec-
tion is considered “active’ if there is a reference to it either from the command line, or from an
active ServerLayout section.

2.3 InputDevice section

The InputDevice section is a new section that describes configuration information for input
devices. It replaces the old Keyboard, Pointer and XInput sections. Like the Device section, it
has two mandatory keywords: Identifier and Driver. For compatibility purposes the old Key-
board and Pointer sections are converted by the parser into InputDevice sections as follows:

Keyboard
Identifier "Implicit Core Keyboard"

Driver "keyboard"

Pointer
Identifier "Implicit Core Pointer"

Driver "mouse"

An InputDevice section is considered active if there is a reference to it in an active ServerLayout
section. An InputDevice section may also be referenced implicitly if there is no ServerLayout
section, if the —screen command line options is used, or if the ServerLayout section doesn’t ref-
erence any InputDevice sections. In this case, the first sections with drivers "keyboard" and
"mouse" are used as the core keyboard and pointer respectively.

2.4 ServerLayout section

The ServerLayout section is a new section that is used to identify which Screen sections are to be
used in a multi-headed configuration, and the relative layout of those screens. It also identifies
which InputDevice sections are to be used. Each ServerLayout section has an identifier, a list of
Screen section identifiers, and a list of InputDevice section identifiers. ServerFlags options may
also be included in a ServerLayout section, making it possible to override the global values in the
ServerFlags section.

A ServerLayout section can be made active by being referenced on the command line. In the
absence of this, a default will be chosen (the first one found). The screen names may optionally

XFree86® server 4.x Design (DRAFT) 3

be followed by a number specifying the preferred screen number, and optionally by information
specifying the physical positioning of the screen, either in absolute terms or relative to another
screen (or screens). When no screen number is specified, they are numbered according to the
order in which they are listed. The old (now obsolete) method of providing the positioning infor-
mation is to give the names of the four adjacent screens. The order of these is top, bottom, left,
right. Here is an example of a ServerLayout section for two screens using the old method, with
the second located to the right of the first:

Section "ServerLayout"
Identifier "Main Layout"

Screen 0 "Screen 1" """ ww nmnm Wwgcoreen 2"
Screen 1 "Screen 2"
Screen "Screen 3"

EndSection

The preferred way of specifying the layout is to explicitly specify the screen’s location in absolute
terms or relative to another screen.

In the absolute case, the upper left corner’s coordinates are given after the Absolute keyword. If
the coordinates are omitted, a value of (0, 0) is assumed. An example of absolute positioning
follows:

Section "ServerLayout"
Identifier "Main Layout"

Screen 0 "Screen 1" Absolute 0 0

Screen 1 "Screen 2" Absolute 1024 0

Screen "Screen 3" Absolute 2048 O
EndSection

In the relative case, the position is specified by either using one of the following keywords fol-
lowed by the name of the reference screen:

RightOf
LeftOf
Above
Below

Relative

When the Relative keyword is used, the reference screen name is followed by the coordinates of
the new screen’s origin relative to reference screen. The following example shows how to use
some of the relative positioning options.

Section "ServerLayout"
Identifier "Main Layout"

Screen 0 "Screen 1"

Screen 1 "Screen 2" RightOf "Screen 1"

Screen "Screen 3" Relative "Screen 1" 2048 0
EndSection

2.5 Options

Options are used more extensively. They may appear in most sections now. Options related to
drivers can be present in the Screen, Device and Monitor sections and the Display subsections.
The order of precedence is Display, Screen, Monitor, Device. Options have been extended to
allow an optional value to be specified in addition to the option name. For more details about
options, see the Options (section 10., page 33) section for details.

XFree86® server 4.x Design (DRAFT) 4

3. Driver Interface

The driver interface consists of a minimal set of entry points that are required based on the exter-
nal events that the driver must react to. No non-essential structure is imposed on the way they
are used beyond that. This is a significant difference compared with the old design.

The entry points for drawing operations are already taken care of by the framebuffer code
(including, XAA). Extensions and enhancements to framebuffer code are outside the scope of this
document.

This approach to the driver interface provides good flexibility, but does increase the complexity of
drivers. To help address this, the XFree86 common layer provides a set of “helper” functions to
take care of things that most drivers need. These helpers help minimise the amount of code
duplication between drivers. The use of helper functions by drivers is however optional, though
encouraged. The basic philosophy behind the helper functions is that they should be useful to
many drivers, that they should balance this against the complexity of their interface. It is
inevitable that some drivers may find some helpers unsuitable and need to provide their own
code.

Events that a driver needs to react to are:

Screenlnit
An initialisation function is called from the DIX layer for each screen at the start of
each server generation.

Enter VT
The server takes control of the console.

Leave VT
The server releases control of the console.

Mode Switch
Change video mode.

ViewPort change
Change the origin of the physical view port.

ScreenSaver state change
Screen saver activation/deactivation.

CloseScreen
A close screen function is called from the DIX layer for each screen at the end of
each server generation.

In addition to these events, the following functions are required by the XFree86 common layer:

Identify
Print a driver identifying message.

Probe
This is how a driver identifies if there is any hardware present that it knows how to
drive.

Prelnit
Process information from the XF86Config file, determine the full characteristics of
the hardware, and determine if a valid configuration is present.

The VidMode extension also requires:

ValidMode
Identify if a new mode is usable with the current configuration. The Prelnit func-
tion (and/or helpers it calls) may also make use of the ValidMode function or

XFree86® server 4.x Design (DRAFT) 5

something similar.

Other extensions may require other entry points. The drivers will inform the common layer of
these in such cases.

4. Resource Access Control Introduction

Graphics devices are accessed through ranges in I/O or memory space. While most modern
graphics devices allow relocation of such ranges many of them still require the use of well estab-
lished interfaces such as VGA memory and IO ranges or 8514/ A IO ranges. With modern buses
(like PCI) it is possible for multiple video devices to share access to these resources. The RAC
(Resource Access Control) subsystem provides a mechanism for this.

4.1 Terms and Definitions
4.1.1 Bus

“Bus” is ambiguous as it is used for different things: it may refer to physical incompatible exten-
sion connectors in a computer system. The RAC system knows two such systems: The ISA bus
and the PCI bus. (On the software level EISA, MCA and VL buses are currently treated like ISA
buses). “Bus” may also refer to logically different entities on a single bus system which are con-
nected via bridges. A PCI system may have several distinct PCI buses connecting each other by
PCI-PCI bridges or to the host CPU by HOST-PCI bridges.

Systems that host more than one bus system link these together using bridges. Bridges are a con-
cern to RAC as they might block or pass specific resources. PCI-PCI bridges may be set up to
pass VGA resources to the secondary bus. PCI-ISA buses pass any resources not decoded on the
primary PCI bus to the ISA bus. This way VGA resources (although exclusive on the ISA bus)
can be shared by ISA and PCI cards. Currently HOST-PCI bridges are not yet handled by RAC as
they require specific drivers.

4.1.2 Entity

The smallest independently addressable unit on a system bus is referred to as an entity. So far we
know ISA and PCI entities. PCI entities can be located on the PCI bus by an unique ID consisting
of the bus, card and function number.

4.1.3 Resource
“Resource” refers to a range of memory or I/O addresses an entity can decode.

If a device is capable of disabling this decoding the resource is called sharable. For PCI devices a
generic method is provided to control resource decoding. Other devices will have to provide a
device specific function to control decoding.

If the entity is capable of decoding this range at a different location this resource is considered
relocatable.

Resources which start at a specific address and occupy a single continuous range are called block
resources.

Alternatively resource addresses can be decoded in a way that they satisfy the conditions:

address & mask == base

and

XFree86® server 4.x Design (DRAFT) 6

base & mask == base

Resources addressed in such a way are called sparse resources.

4.1.4 Server States

The resource access control system knows two server states: the SETUP and the OPERATING
state. The SETUP state is entered whenever a mode change takes place or the server exits or does
VT switching. During this state all entity resources are under resource access control. During
OPERATING state only those entities are controlled which actually have shared resources that
conflict with others.

5. Control Flow in the Server and Mandatory Driver
Functions

At the start of each server generation, main () (dix/main.c) calls the DDX function InitOut—
put (). This is the first place that the DDX gets control. InitOutput () is expected to fill in the
global screenInfo struct, and one screenInfo.screen[] entry for each screen present.
Here is what InitOutput () does:

5.1 Parse the XF86Config file

This is done at the start of the first server generation only.

The XF86Config file is read in full, and the resulting information stored in data structures. None
of the parsed information is processed at this point. The parser data structures are opaque to the
video drivers and to most of the common layer code.

The entire file is parsed first to remove any section ordering requirements.

5.2 Initial processing of parsed information and command line
options
This is done at the start of the first server generation only.

The initial processing is to determine paths like the ModulePath, etc, and to determine which
ServerLayout, Screen and Device sections are active.

5.3 Enable port I/O access

Port I/O access is controlled from the XFree86 common layer, and is “all or nothing”. It is
enabled prior to calling driver probes, at the start of subsequent server generations, and when VT
switching back to the Xserver. It is disabled at the end of server generations, and when VT
switching away from the Xserver.

The implementation details of this may vary on different platforms.

5.4 General bus probe
This is done at the start of the first server generation only.

In the case of ix86 machines, this will be a general PCI probe. The full information obtained here
will be available to the drivers. This information persists for the life of the Xserver. In the PCI
case, the PCI information for all video cards found is available by calling xf86GetP—
civVideoInfo().

XFree86® server 4.x Design (DRAFT) 7

pcivVideoPtr *xf86GetPciVideoInfo (void)

returns a pointer to a list of pointers to pcivVideoRec entries, of which
there is one for each detected PCI video card. The list is terminated with a
NULL pointer. If no PCI video cards were detected, the return value is
NULL.

After the bus probe, the resource broker is initialised.

5.5 Load initial set of modules
This is done at the start of the first server generation only.

The core server contains a list of mandatory modules. These are loaded first. Currently the only
module on this list is the bitmap font module.

The next set of modules loaded are those specified explicitly in the Module section of the config
file.

The final set of initial modules are the driver modules referenced by the active Device and Input-
Device sections in the config file. Each of these modules is loaded exactly once.

5.6 Register Video and Input Drivers
This is done at the start of the first server generation only.

When a driver module is loaded, the loader calls its Setup function. For video drivers, this func-
tion calls xf86AddDriver () to register the driver’s DriverRec, which contains a small set of
essential details and driver entry points required during the early phase of InitOutput ().
xf£86AddDriver () adds it to the global x£86DriverList [] array.

The DriverRec contains the driver canonical name, the Identify (), Probe () and Avail-
ableOptions () function entry points as well as a pointer to the driver’s module (as returned
from the loader when the driver was loaded) and a reference count which keeps track of how
many screens are using the driver. The entry driver entry points are those required prior to the
driver allocating and filling in its ScrnInfoRec.

For a static server, the xf86DriverList [] array is initialised at build time, and the loading of
modules is not done.

A similar procedure is used for input drivers. The input driver’s Setup function calls
xf86AddInputDriver () to register the driver’s InputDriverRec, which contains a small set
of essential details and driver entry points required during the early phase of InitInput ().
xf£86AddInputDriver () adds it to the global x£86InputDriverList[] array. For a static
server, the xf86InputDriverList [] array is initialised at build time.

Both the xf86DriverList[] and x£86InputDriverList[] arrays have been initialised by
the end of this stage.

Once all the drivers are registered, their ChipIdentify () functions are called.
void ChipIdentify(int flags)

This is expected to print a message indicating the driver name, a short
summary of what it supports, and a list of the chipset names that it sup-
ports. It may use the xf86PrintChipsets() helper to do this.

XFree86® server 4.x Design (DRAFT) 8

void xf86PrintChipsets(const char *drvname, const char *drvmsg,

SymTabPtr chips)

This function provides an easy way for a driver’s Chipldentify function to
format the identification message.

5.7 Initialise Access Control
This is done at the start of the first server generation only.

The Resource Access Control (RAC) subsystem is initialised before calling any driver functions
that may access hardware. All generic bus information is probed and saved (for restoration
later). All (shared resource) video devices are disabled at the generic bus level, and a probe is
done to find the “primary”’ video device. These devices remain disabled for the next step.

5.8 Video Driver Probe

This is done at the start of the first server generation only. The ChipProbe () function of each
registered video driver is called.

Bool ChipProbe (DriverPtr drv, int flags)

The purpose of this is to identify all instances of hardware supported by
the driver. The flags value is currently either 0, PROBE_DEFAULT or
PROBE_DETECT. PROBE_DETECT is used if "-configure" or "-probe" com-
mand line arguments are given and indicates to the Probe () function that
it should not configure the bus entities and that no XF86Config informa-
tion is available.

The probe must find the active device sections that match the driver by
calling xf86MatchDevice (). The number of matches found limits the
maximum number of instances for this driver. If no matches are found,
the function should return FALSE immediately.

Devices that cannot be identified by using device-independent methods
should be probed at this stage (keeping in mind that access to all resources
that can be disabled in a device-independent way are disabled during this
phase). The probe must be a minimal probe. It should just determine if
there is a card present that the driver can drive. It should use the least
intrusive probe methods possible. It must not do anything that is not
essential, like probing for other details such as the amount of memory
installed, etc. It is recommended that the xf86MatchPciInstances ()
helper function be used for identifying matching PCI devices, and simi-
larly the xf86MatchIsaInstances () for ISA (non-PCI) devices (see the
RAC (section 9., page 22) section). These helpers also checks and claims
the appropriate entity. When not using the helper, that should be done
with xf86CheckPciSlot () and x£86ClaimPciSlot () for PCI devices
and xf86ClaimIsaSlot () for ISA devices (see the RAC (section 9., page
22) section).

The probe must register all non-relocatable resources at this stage. If a
resource conflict is found between exclusive resources the driver will fail
immediately. This is usually best done with the xf86ConfigPciEn—
tity () helper function for PCI and x£f86ConfigIsaEntity () for ISA
(see the RAC (section 9., page 22) section). It is possible to register some
entity specific functions with those helpers. When not using the helpers,
the xf86AddEntityToScreen() xf86ClaimFixedResources () and

XFree86® server 4.x Design (DRAFT) 9

xf86SetEntityFuncs () should be used instead (see the RAC (section
9., page 22) section).

If a chipset is specified in an active device section which the driver consid-
ers relevant (ie it has no driver specified, or the driver specified matches
the driver doing the probe), the Probe must return FALSE if the chipset
doesn’t match one supported by the driver.

If there are no active device sections that the driver considers relevant, it
must return FALSE.

Allocate a ScrnInfoRec for each active instance of the hardware found,
and fill in the basic information, including the other driver entry points.
This is best done with the xf86ConfigIsaEntity () helper function for
ISA instances or xf86ConfigPciEntity () for PCI instances. These
functions allocate a ScrnInfoRec for active entities. Optionally
xf86AllocateScreen() function may also be used to allocate the
ScrnInfoRec. Any of these functions take care of initialising fields to
defined “unused” values.

Claim the entities for each instance of the hardware found. This prevents
other drivers from claiming the same hardware.

Must leave hardware in the same state it found it in, and must not do any
hardware initialisation.

All detection can be overridden via the config file, and that parsed infor-
mation is available to the driver at this stage.

Returns TRUE if one or more instances are found, and FALSE otherwise.

int xf86MatchDevice (const char *drivername,
GDevPtr **driversectlist)

This function takes the name of the driver and returns via driver-
sectlist a list of device sections that match the driver name. The func-
tion return value is the number of matches found. If a fatal error is
encountered the return value is - 1.

The caller should use xfree () to free *driversectlist when it is no
longer needed.

ScrnInfoPtr xf86AllocateScreen(DriverPtr drv, int flags)

This function allocates a new ScrnInfoRec in the xf86Screens(]
array. This function is normally called by the video driver ChipProbe ()
functions. The return value is a pointer to the newly allocated ScrnIn-
foRec. The scrnlndex, origIndex, module and drv fields are ini-
tialised. The reference count in drv is incremented. The storage for any
currently allocated “privates” pointers is also allocated and the privates
field initialised (the privates data is of course not allocated or initialised).
This function never returns on failure. If the allocation fails, the server
exits with a fatal error. The flags value is not currently used, and should
be set to zero.

At the completion of this, a list of ScrnInfoRecs have been allocated in the xf86Screens|]
array, and the associated entities and fixed resources have been claimed. The following ScrnIn-
foRec fields must be initialised at this point:

XFree86® server 4.x Design (DRAFT) 10

driverVersion
driverName
scrnIndex (*)
origIndex (*)
drv (*)
module (*)
name

Probe
PreInit
ScreenInit
EnterVT
LeaveVT
numEntities
entityList
access

(*) These are initialised when the ScrnInfoRec is allocated, and not explicitly by the driver.

The following ScrnInfoRec fields must be initialised if the driver is going to use them:

SwitchMode
AdjustFrame
FreeScreen
ValidMode

5.9 Matching Screens
This is done at the start of the first server generation only.

After the Probe phase is finished, there will be some number of ScrnInfoRecs. These are then
matched with the active Screen sections in the XF86Config, and those not having an active
Screen section are deleted. If the number of remaining screens is 0, InitOutput () sets
screenInfo.numScreens to 0 and returns.

At this point the following fields of the ScrnInfoRecs must be initialised:

confScreen

5.10 Allocate non-conflicting resources
This is done at the start of the first server generation only.

Before calling the drivers again, the resource information collected from the Probe phase is pro-
cessed. This includes checking the extent of PCI resources for the probed devices, and resolving
any conflicts in the relocatable PCI resources. It also reports conflicts, checks bus routing issues,
and anything else that is needed to enable the entities for the next phase.

If any drivers registered an EntityInit () function during the Probe phase, then they are called
here.

5.11 Sort the Screens and pre-check Monitor Information
This is done at the start of the first server generation only.
The list of screens is sorted to match the ordering requested in the config file.

The list of modes for each active monitor is checked against the monitor’s parameters. Invalid
modes are pruned.

XFree86® server 4.x Design (DRAFT) 11

5.12 Prelnit

This is done at the start of the first server generation only.

For each ScrnInfoRec, enable access to the screens entities and call the ChipPreInit () func-
tion.

Bool ChipPreInit (ScrnInfoRec screen, int flags)

The purpose of this function is to find out all the information required to
determine if the configuration is usable, and to initialise those parts of the
ScrnInfoRec that can be set once at the beginning of the first server gen-
eration.

The number of entities registered for the screen should be checked against
the expected number (most drivers expect only one). The entity informa-
tion for each of them should be retrieved (with xf86GetEntityInfo())
and checked for the correct bus type and that none of the sharable
resources registered during the Probe phase was rejected.

Access to resources for the entities that can be controlled in a device-inde-
pendent way are enabled before this function is called. If the driver needs
to access any resources that it has disabled in an EntityInit () function
that it registered, then it may enable them here providing that it disables
them before this function returns.

This includes probing for video memory, clocks, ramdac, and all other HW
info that is needed. It includes determining the depth/bpp/visual and
related info. It includes validating and determining the set of video modes
that will be used (and anything that is required to determine that).

This information should be determined in the least intrusive way possible.
The state of the HW must remain unchanged by this function. Although
video memory (including MMIO) may be mapped within this function, it
must be unmapped before returning. Driver specific information should
be stored in a structure hooked into the ScrnInfoRec’s driverPrivate
field. Any other modules which require persistent data (ie data that per-
sists across server generations) should be initialised in this function, and
they should allocate a “privates”” index to hook their data into by calling
xf86AllocateScrnInfoPrivateIndex (). The “privates” data is
persistent.

Helper functions for some of these things are provided at the XFree86 com-
mon level, and the driver can choose to make use of them.

All additional resources that the screen needs must be registered here.
This should be done with xf86RegisterResources (). If some of the
fixed resources registered in the Probe phase are not needed or not
decoded by the hardware when in the OPERATING server state, their sta-
tus should be updated with xf86SetOperatingState ().

Modules may be loaded at any point in this function, and all modules that
the driver will need must be loaded before the end of this function. Either
the xf86LoadSubModule () or the xf86LoadDrvSubModule () func-
tion should be used to load modules depending on whether a ScrnIn-
foRec has been set up. A driver may unload a module within this func-
tion if it was only needed temporarily, and the x£86UnloadSubMod-
ule () function should be used to do that. Otherwise there is no need to
explicitly unload modules because the loader takes care of module depen-

XFree86® server 4.x Design (DRAFT) 12

dencies and will unload submodules automatically if/when the driver
module is unloaded.

The bulk of the ScrnInfoRec fields should be filled out in this function.

ChipPreInit () returns FALSE when the configuration is unusable in
some way (unsupported depth, no valid modes, not enough video mem-
ory, etc), and TRUE if it is usable.

It is expected that if the ChipPrelInit () function returns TRUE, then the
only reasons that subsequent stages in the driver might fail are lack or
resources (like xalloc failures). All other possible reasons for failure should
be determined by the ChipPreInit () function.

The ScrnInfoRecs for screens where the ChipPrelInit () fails are removed. If none remain,
InitOutput () sets screenInfo.numScreens to 0 and returns.

At this point, further fields of the ScrnInfoRecs would normally be filled in. Most are not
strictly mandatory, but many are required by other layers and/or helper functions that the driver
may choose to use. The documentation for those layers and helper functions indicates which
they require.

The following fields of the ScrnInfoRecs should be filled in if the driver is going to use them:

monitor

display

depth

pixmapBPP

bitsPerPixel

weight (>8bpp only)
mask (>8bpp only)
offset (>8bpp only)
rgbBits (8bpp only)
gamma

defaultVisual

maxHValue

maxVValue

virtualX

virtualY

displayWidth

frameX0

frameY0

frameX1

frameYl

zoomLocked

modePool

modes

currentMode

progClock (TRUE if clock is programmable)
chipset

ramdac

clockchip

numClocks (if not programmable)
clock[] (1f not programmable)
videoRam

biosBase

memBase

memClk

driverPrivate

chipID

chipRev

XFree86® server 4.x Design (DRAFT) 13

pointer xf86LoadSubModule (ScrnInfoPtr pScrn, const char *name):
and pointer xf86LoadDrvSubModule (DriverPtr drv, const char
*name):

Load a module that a driver depends on. This function loads the module
name as a sub module of the driver. The return value is a handle identify-
ing the new module. If the load fails, the return value will be NULL. If a
driver needs to explicitly unload a module it has loaded in this way, the
return value must be saved and passed to xf86UnloadSubModule ()
when unloading.

void xf86UnloadSubModule (pointer module)

Unloads the module referenced by module. module should be a pointer
returned previously by xf86LoadSubModule () or xf86LoadDrvSub-—
Module () .

5.13 Cleaning up Unused Drivers

At this point it is known which screens will be in use, and which drivers are being used. Unrefer-
enced drivers (and modules they may have loaded) are unloaded here.

5.14 Consistency Checks

The parameters that must be global to the server, like pixmap formats, bitmap bit order, bitmap
scanline unit and image byte order are compared for each of the screens. If a mismatch is found,
the server exits with an appropriate message.

5.15 Check if Resource Control is Needed

Determine if resource access control is needed. This is the case if more than one screen is used. If
necessary the RAC wrapper module is loaded.

5.16 AddScreen (Screenlnit)

At this point, the valid screens are known. AddScreen() is called for each of them, passing
ChipScreenInit () as the argument. AddScreen() is a DIX function that allocates a new
screenInfo.screen[] entry (aka pScreen), and does some basic initialisation of it. It then
calls the ChipScreenInit () function, with pScreen as one of its arguments. If Chip-—
ScreenInit () returns FALSE, AddScreen () returns —1. Otherwise it returns the index of the
screen. AddScreen () should only fail because of programming errors or failure to allocate
resources (like memory). All configuration problems should be detected BEFORE this point.

XFree86® server 4.x Design (DRAFT)

Bool ChipScreenInit (int index, ScreenPtr pScreen,

int argc, char **argv)

This is called at the start of each server generation.

Fill in all of pScreen, possibly doing some of this by calling Screenlnit
functions from other layers like mi, framebuffers (cfb, etc), and extensions.

Decide which operations need to be placed under resource access control.
The classes of operations are the frame buffer operations (RAC_FB), the
pointer operations (RAC_CURSOR), the viewport change operations
(RAC_VIEWPORT) and the colormap operations (RAC_COLORMAP). Any
operation that requires resources which might be disabled during OPER-
ATING state should be set to use RAC. This can be specified separately for
memory and IO resources (the racMemFlags and racIoFlags fields of
the ScrnInfoRec respectively).

Map any video memory or other memory regions.

Save the video card state. Enough state must be saved so that the original
state can later be restored.

Initialise the initial video mode. The ScrnInfoRec’s vtSema field should
be set to TRUE just prior to changing the video hardware’s state.

14

The ChipScreenInit () function (or functions from other layers that it calls) should allocate
entries in the ScreenRec’s devPrivates area by calling AllocateScreenPrivateIndex ()
if it needs per-generation storage. Since the ScreenRec’s devPrivates information is cleared
for each server generation, this is the correct place to initialise it.

After AddScreen () has successfully returned, the following ScrnInfoRec fields are initialised:

pScreen
racMemFlags
racIoFlags

The ChipScreenInit () function should initialise the CloseScreen and SaveScreen fields
of pScreen. The old value of pScreen->CloseScreen should be saved as part of the driver’s
per-screen private data, allowing it to be called from ChipCloseScreen (). This means that the
existing CloseScreen () function is wrapped.

5.17 Finalising RAC Initialisation

After all the ChipScreenInit () functions have been called, each screen has registered its RAC
requirements. This information is used to determine which shared resources are requested by
more than one driver and set the access functions accordingly. This is done following these rules:

1.

The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to indicate that it needs to share this
resources type (IO or MEM).

A resource marked “disabled” during OPERATING state will be ignored entirely.

A resource marked “unused” will only conflict with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

If an “unused” resource was found to conflict but the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

XFree86® server 4.x Design (DRAFT) 15

5.18 Finishing InitOutput()

At this point InitOutput () is finished, and all the screens have been setup in their initial video
mode.

5.19 Mode Switching

When a SwitchMode event is received, ChipSwitchMode () is called (when it exists):
Bool ChipSwitchMode (int index, DisplayModePtr mode, int flags)

Initialises the new mode for the screen identified by index;. The view-
port may need to be adjusted also.

5.20 Changing Viewport

When a Change Viewport event is received, ChipAdjustFrame () is called (when it exists):
void ChipAdjustFrame (int index, int x, int y, int flags)

Changes the viewport for the screen identified by index.

It should be noted that many chipsets impose restrictions on where the
viewport may be placed in the virtual resolution, either for alignment rea-
sons, or to prevent the start of the viewport from being positioned within a
pixel (as can happen in a 24bpp mode). After calculating the value the
chipset’s panning registers need to be set to for non-DGA modes, this func-
tion should recalculate the ScrnInfoRec’s frameX0, frameY0, frameX1l
and frameY1 fields to correspond to that value. If this is not done, switch-
ing to another mode might cause the position of a hardware cursor to
change.

5.21 VT Switching

When a VT switch event is received, x£86VTSwitch () is called. x£86VTSwitch () does the
following:

On ENTER:
« enable port I/O access
« save and initialise the bus/resource state
» enter the SETUP server state
e calls ChipEnterVT () for each screen
» enter the OPERATING server state
+ validate GCs
* Restore fb from saved pixmap for each screen
+ Enable all input devices
On LEAVE:
* Save fb to pixmap for each screen

o validate GCs

XFree86® server 4.x Design (DRAFT) 16

enter the SETUP server state

e calls ChipLeaveVT () for each screen

disable all input devices

restore bus/resource state

disables port I/O access

Bool ChipEnterVT (int index, int flags)
This function should initialise the current video mode and initialise the
viewport, turn on the HW cursor if appropriate, etc.
Should it re-save the video state before initialising the video mode?

void ChipLeaveVT (int index, int flags)
This function should restore the saved video state. If appropriate it should
also turn off the HW cursor, and invalidate any pixmap /font caches.

Optionally, ChipLeaveVT () may also unmap memory regions. If so, ChipEn-
terVT () will need to remap them. Additionally, if an aperture used to access video
memory is unmapped and remapped in this fashion, ChipEnterVT () will also need
to notify the framebuffer layers of the aperture’s new location in virtual memory.
This is done with a call to the screen’s ModifyPixmapHeader () function, as follows

(*pScreen->ModifyPixmapHeader) (pScrn->ppix,
-1, -1, -1, -1, -1, NewApertureAddress);

where the ‘‘ppix’’ field in a ScrnlnfoRec points to the
pixmap used by the screen’s SaveRestoreImage () function
to hold the screen’s contents while switched out.

Currently, aperture remapping, as described here, should not be attempted if the
driver uses the x£8_16bpp or x£8_32bpp framebuffer layers. A pending restructur-
ing of VT switching will address this restriction in the near future.

Other layers may wrap the ChipEnterVT () and ChipLeaveVT () functions if they need to take
some action when these events are received.

5.22 End of server generation

At the end of each server generation, the DIX layer calls ChipCloseScreen () for each screen:

XFree86® server 4.x Design (DRAFT) 17

Bool ChipCloseScreen(int index, ScreenPtr pScreen)

This function should restore the saved video state and unmap the memory
regions.

It should also free per-screen data structures allocated by the driver. Note
that the persistent data held in the ScrnInfoRec’s driverPrivate field
should not be freed here because it is needed by subsequent server genera-
tions.

The ScrnInfoRec’s vtSema field should be set to FALSE once the video
HW state has been restored.

Before freeing the per-screen driver data the saved CloseScreen value
should be restored to pScreen->CloseScreen, and that function should
be called after freeing the data.

6. Optional Driver Functions

The functions outlined here can be called from the XFree86 common layer, but their presence is
optional.

6.1 Mode Validation

When a mode validation helper supplied by the XFree86-common layer is being used, it can be
useful to provide a function to check for hw specific mode constraints:

ModeStatus ChipValidMode (int index, DisplayModePtr mode,
Bool verbose, int flags)

Check the passed mode for hw-specific constraints, and return the appro-
priate status value.

This function may also modify the effective timings and clock of the passed mode. These have
been stored in the mode’s Crtc* and SynthClock elements, and have already been adjusted for
interlacing, doublescanning, multiscanning and clock multipliers and dividers. The function
should not modify any other mode field, unless it wants to modify the mode timings reported to
the user by x£86PrintModes ().

The function is called once for every mode in the XF86Config Monitor section assigned to the
screen, with flags set to MODECHECK_INITIAL. It is subsequently called for every mode in the
XF86Config Display subsection assigned to the screen, with f1ags set to MODECHECK_FINAL. In
the second case, the mode will have successfully passed all other tests. In addition, the ScrnIn-
foRec’svirtualX, virtualY and displayWidth fields will have been set as if the mode to be
validated were to be the last mode accepted.

In effect, calls with MODECHECK_INITIAL are intended for checks that do not depend on any
mode other than the one being validated, while calls with MODECHECK_FINAL are intended
for checks that may involve more than one mode.

6.2 Free screen data

When a screen is deleted prior to the completion of the Screenlnit phase the ChipFreeScreen ()
function is called when defined.

XFree86® server 4.x Design (DRAFT) 18

void ChipFreeScreen(int scrnindex, int flags)

Free any driver-allocated data that may have been allocated up to and
including an unsuccessful ChipScreenInit () call. This would predom-
inantly be data allocated by ChipPreInit () that persists across server
generations. It would include the driverPrivate, and any “privates”
entries that modules may have allocated.

7. Recommended driver functions

The functions outlined here are for internal use by the driver only. They are entirely optional,
and are never accessed directly from higher layers. The sample function declarations shown here
are just examples. The interface (if any) used is up to the driver.

7.1 Save

Save the video state. This could be called from ChipScreenInit () and (possibly) ChipEn—
terVT ().

void ChipSave (ScrnInfoPtr pScrn)

Saves the current state. This will only be saving pre-server states or states
before returning to the server. There is only one current saved state per
screen and it is stored in private storage in the screen.

7.2 Restore

Restore the original video state. This could be called from the ChipLeaveVT () and ChipClos—
eScreen () functions.

void ChipRestore (ScrnInfoPtr pScrn)

Restores the saved state from the private storage. Usually only used for
restoring text modes.

7.3 Initialise Mode
Initialise a video mode. This could be called from the ChipScreenInit (), ChipSwitch-
Mode () and ChipEnterVT () functions.

Bool ChipModeInit (ScrnInfoPtr pScrn, DisplayModePtr mode)

Programs the hardware for the given video mode.

8. Data and Data Structures
8.1 Command line data

Command line options are typically global, and are stored in global variables. These variables
are read-only and are available to drivers via a function call interface. Most of these command
line values are processed via helper functions to ensure that they are treated consistently by all
drivers. The other means of access is provided for cases where the supplied helper functions
might not be appropriate.

Some of them are:

XFree86® server 4.x Design (DRAFT) 19

xf86Verbose verbosity level

xf£86Bpp -bpp from the command line

xf86Depth —depth from the command line
xf86Weight -weight from the command line
xf86Gamma -{r,g,b, Jgamma from the command line
xf86FlipPixels -flippixels from the command line
xf86ProbeOnly -probeonly from the command line
defaultColorVisualClass —cc from the command line

If we ever do allow for screen-specific command line options, we may need to rethink this.

These can be accessed in a read-only manner by drivers with the following functions:
int xf86GetVerbosity ()

Returns the value of xf86Verbose.

int xf86GetDepth ()

Returns the —-depth command line setting. If not set on the command
line, -1 is returned.

rgb xf86GetWeight ()

Returns the ~-weight command line setting. If not set on the command
line, {0, 0, O} isreturned.

Gamma xf86GetGamma ()

Returns the —~gamma or ~rgamma, —~ggamma, ~bgamma command line set-
tings. If not set on the command line, {0.0, 0.0, 0.0} isreturned.

Bool xf86GetFlipPixels ()

Returns TRUE if -flippixels is present on the command line, and
FALSE otherwise.

const char *xf86GetServerName ()

Returns the name of the X server from the command line.

8.2 Data handling

Conlfig file data contains parts that are global, and parts that are Screen specific. All of it is parsed
into data structures that neither the drivers or most other parts of the server need to know about.

The global data is typically not required by drivers, and as such, most of it is stored in the private
xf86InfoRec.

The screen-specific data collected from the config file is stored in screen, device, display, monitor-
specific data structures that are separate from the ScrnInfoRecs, with the appropriate ele-
ments/fields hooked into the ScrnInfoRecs as required. The screen config data is held in con-
fScreenRec, device data in the GDevRec, monitor data in the MonRec, and display data in the
DispRec.

The XFree86 common layer’s screen specific data (the actual data in use for each screen) is held in
the ScrnInfoRecs. As has been outlined above, the ScrnInfoRecs are allocated at probe
time, and it is the responsibility of the Drivers’ Probe () and PreInit () functions to finish fill-
ing them in based on both data provided on the command line and data provided from the Con-
fig file. The precedence for this is:

XFree86® server 4.x Design (DRAFT) 20

command line -> config file -> probed/default data

For most things in this category there are helper functions that the drivers can use to ensure that
the above precedence is consistently used.

As well as containing screen-specific data that the XFree86 common layer (including essential
parts of the server infrastructure as well as helper functions) needs to access, it also contains some
data that drivers use internally. When considering whether to add a new field to the ScrnIn-
foRec, consider the balance between the convenience of things that lots of drivers need and the
size/obscurity of the ScrnInfoRec.

Per-screen driver specific data that cannot be accommodated with the static ScrnInfoRec fields
is held in a driver-defined data structure, a pointer to which is assigned to the ScrnInfoRec’s
driverPrivate field. This is per-screen data that persists across server generations (as does the
bulk of the static ScrnInfoRec data). It would typically also include the video card’s saved
state.

Per-screen data for other modules that the driver uses (for example, the XAA module) that is
reset for each server generation is hooked into the ScrnInfoRec throughit’s privates field.

Once it has stabilised, the data structures and variables accessible to video drivers will be docu-
mented here. In the meantime, those things defined in the x£86 .h and x£86str . h files are visi-
ble to video drivers. Things defined in xf86Priv.h and xf86Privstr.h are NOT intended to
be visible to video drivers, and it is an error for a driver to include those files.

8.3 Accessing global data
Some other global state information that the drivers may access via functions is as follows:
Bool xf86ServerIskExiting()
Returns TRUE if the server is at the end of a generation and is in the
process of exiting, and FALSE otherwise.
Bool xf86ServerIsResetting()
Returns TRUE if the server is at the end of a generation and is in the
process of resetting, and FALSE otherwise.
Bool xf86ServerIsInitialising()
Returns TRUE if the server is at the beginning of a generation and is in the
process of initialising, and FALSE otherwise.
Bool xf86ServerIsOnlyProbing()
Returns TRUE if the -probeonly command line flag was specified, and
FALSE otherwise.

Bool xf86CaughtSignal ()

Returns TRUE if the server has caught a signal, and FALSE otherwise.

8.4 Allocating private data

A driver and any module it uses may allocate per-screen private storage in either the ScreenRec
(DIX level) or ScrnInfoRec (XFree86 common layer level). ScreenRec storage persists only
for a single server generation, and ScrnInfoRec storage persists across generations for the life-
time of the server.

XFree86® server 4.x Design (DRAFT) 21

The ScreenRec devPrivates data must be reallocated/initialised at the start of each new gen-
eration. This is normally done from the ChipScreenInit () function, and Init functions for
other modules that it calls. Data allocated in this way should be freed by the driver’s ChipClos—
eScreen () functions, and Close functions for other modules that it calls. A new devPrivates
entry is allocated by calling the A11ocateScreenPrivateIndex () function.

int AllocateScreenPrivatelIndex ()

This function allocates a new element in the devPrivates field of all cur-
rently existing ScreenRecs. The return value is the index of this new ele-
ment in the devPrivates array. The devPrivates field is of type
DevUnion:

typedef union _DevUnion {

pointer ptr;

long val;

unsigned long uval;

pointer (*fptr) (void);
} DevUnion;

which allows the element to be used for any of the above types. It is com-
monly used as a pointer to data that the caller allocates after the new index
has been allocated.

This function will return -1 when there is an error allocating the new
index.

The scrnInfoRec privates data persists for the life of the server, so only needs to be allocated
once. This should be done from the ChipPreInit () function, and Init functions for other mod-
ules that it calls. Data allocated in this way should be freed by the driver’s ChipFreeScreen ()
functions, and Free functions for other modules that it calls. A new privates entry is allocated
by calling the xf86AllocateScrnInfoPrivateIndex () function.

int xf86AllocateScrnInfoPrivateIndex ()

This function allocates a new element in the privates field of all cur-
rently existing ScrnInfoRecs. The return value is the index of this new
element in the privates array. The privates field is of type DevU-
nion:

typedef union _DevUnion {

pointer ptr;

long val;

unsigned long uval;

pointer (*fptr) (void);
} DevUnion;

which allows the element to be used for any of the above types. It is com-
monly used as a pointer to data that the caller allocates after the new index
has been allocated.

This function will not return when there is an error allocating the new
index. When there is an error it will cause the server to exit with a fatal
error. The similar function for allocation privates in the ScreenRec
(AllocateScreenPrivateIndex ()) differs in this respect by returning
-1 when the allocation fails.

XFree86® server 4.x Design (DRAFT) 22

9. Keeping Track of Bus Resources
9.1 Theory of Operation

The XFree86 common layer has knowledge of generic access control mechanisms for devices on
certain bus systems (currently the PCI bus) as well as of methods to enable or disable access to
the buses itself. Furthermore it can access information on resources decoded by these devices
and if necessary modify it.

When first starting the Xserver collects all this information, saves it for restoration, checks it for
consistency, and if necessary, corrects it. Finally it disables all resources on a generic level prior to
calling any driver function.

When the Probe () function of each driver is called the device sections are matched against the
devices found in the system. The driver may probe devices at this stage that cannot be identified
by using device independent methods. Access to all resources that can be controlled in a device
independent way is disabled. The Probe () function should register all non-relocatable
resources at this stage. If a resource conflict is found between exclusive resources the driver will
fail immediately. Optionally the driver might specify an EntityInit (), EntityLeave () and
EntityEnter () function.

EntityInit () canbe used to disable any shared resources that are not controlled by the generic
access control functions. It is called prior to the Prelnit phase regardless if an entity is active or
not. When calling the EntityInit (), EntityEnter () and EntityLeave () functions the
common level will disable access to all other entities on a generic level. Since the common level
has no knowledge of device specific methods to disable access to resources it cannot be guaran-
teed that certain resources are not decoded by any other entity until the EntityInit () or
EntityEnter () phase is finished. Device drivers should therefore register all those resources
which they are going to disable. If these resources are never to be used by any driver function
they may be flagged ResInit so that they can be removed from the resource list after processing
all EntityInit () functions. EntityEnter () should disable decoding of all resources which
are not registered as exclusive and which are not handled by the generic access control in the
common level. The difference to EntityInit () is that the latter one is only called once during
lifetime of the server. It can therefore be used to set up variables prior to disabling resources.
EntityLeave () should restore the original state when exiting the server or switching to a dif-
ferent VT. It also needs to disable device specific access functions if they need to be disabled on
server exit or VT switch. The default state is to enable them before giving up the VT.

In PreInit () phase each driver should check if any sharable resources it has registered during
Probe () has been denied and take appropriate action which could simply be to fail. If it needs
to access resources it has disabled during EntitySetup () it can do so provided it has registered
these and will disable them before returning from PreInit (). This also applies to all other
driver functions. Several functions are provided to request resource ranges, register these, correct
PCI config space and add replacements for the generic access functions. Resources may be
marked “disabled” or “unused” during OPERATING stage. Although these steps could also be
performed in ScreenInit (), this is not desirable.

Following PreInit () phase the common level determines if resource access control is needed.
This is the case if more than one screen is used. If necessary the RAC wrapper module is loaded.
In ScreenInit () the drivers can decide which operations need to be placed under RAC. Avail-
able are the frame buffer operations, the pointer operations and the colormap operations. Any
operation that requires resources which might be disabled during OPERATING state should be
set to use RAC. This can be specified separately for memory and IO resources.

When ScreenInit () phase is done the common level will determine which shared resources
are requested by more than one driver and set the access functions accordingly. This is done fol-
lowing these rules:

XFree86® server 4.x Design (DRAFT) 23

1. The sharable resources registered by each entity are compared. If a resource is registered
by more than one entity the entity will be marked to need to share this resources type (10
or MEM).

2. Aresource marked “disabled” during OPERATING state will be ignored entirely.

3. A resource marked “unused” will only conflicts with an overlapping resource of an other
entity if the second is actually in use during OPERATING state.

4. If an “unused” resource was found to conflict however the entity does not use any other
resource of this type the entire resource type will be disabled for that entity.

The driver has the choice among different ways to control access to certain resources:

1. It can rely on the generic access functions. This is probably the most common case. Here
the driver only needs to register any resource it is going to use.

2. It can replace the generic access functions by driver specific ones. This will mostly be used
in cases where no generic access functions are available. In this case the driver has to
make sure these resources are disabled when entering the PreInit () stage. Since the
replacement functions are registered in PreInit () the driver will have to enable these
resources itself if it needs to access them during this state. The driver can specify if the
replacement functions can control memory and/or I/O resources separately.

3. The driver can enable resources itself when it needs them. Each driver function enabling
them needs to disable them before it will return. This should be used if a resource which
can be controlled in a device dependent way is only required during SETUP state. This
way it can be marked “unused”” during OPERATING state.

A resource which is decoded during OPERATING state however never accessed by the driver
should be marked unused.

Since access switching latencies are an issue during Xserver operation, the common level
attempts to minimize the number of entities that need to be placed under RAC control. When a
wrapped operation is called, the EnableAccess () function is called before control is passed on.
EnableAccess () checks if a screen is under access control. If not it just establishes bus routing
and returns. If the screen needs to be under access control, EnableAccess () determines which
resource types (MEM, I0) are required. Then it tests if this access is already established. If so it
simply returns. If not it disables the currently established access, fixes bus routing and enables
access to all entities registered for this screen.

Whenever a mode switch or a VT-switch is performed the common level will return to SETUP
state.

9.2 Resource Types

Resource have certain properties. When registering resources each range is accompanied by a
flag consisting of the ORed flags of the different properties the resource has. Each resource range
may be classified according to

« its physical properties i.e., if it addresses memory (ResMem) or I/O space (ResIo),
« if it addresses a block (ResBlock) or sparse (ResSparse) range,
e its access properties.

There are two known access properties:
* ResExclusive for resources which may not be shared with any other device and
» ResShared for resources which can be disabled and therefore can be shared.

If it is necessary to test a resource against any type a generic access type ResAny is provided. If
this is set the resource will conflict with any resource of a different entity intersecting its range.

XFree86® server 4.x Design (DRAFT) 24

Further it can be specified that a resource is decoded however never used during any stage
(ResUnused) or during OPERATING state (ResUnusedOpr). A resource only visible during the
init functions (fe. EntityInit (), EntityEnter () and EntityLeave () should be registered
with the flag ResInit. A resource that might conflict with background resource ranges may be
flagged with ResBios. This might be useful when registering resources ranges that were
assigned by the system Bios.

Several predefined resource lists are available for VGA and 8514/A resources in com-
mon/xf86Resources.h.

9.3 Available Functions

The functions provided for resource management are listed in their order of use in the driver.

9.3.1 Probe Phase

In this phase each driver detects those resources it is able to drive, creates an entity record for
each of them, registers non-relocatable resources and allocates screens and adds the resources to
screens.

Two helper functions are provided for matching device sections in the XF86Config file to the
devices:

int xf86MatchPcilInstances (const char *driverName, int vendorID,
SymTabPtr chipsets, PciChipsets *PCIchipsets,
GDevPtr *devlList, int numDevs, DriverPtr drvp,
int **foundEntities)

This function finds matches between PCI cards that a driver supports and
config file device sections. It is intended for use in the ChipProbe ()
function of drivers for PCI cards. Only probed PCI devices with a vendor
ID matching vendorID are considered. devList and numbDevs are typi-
cally those found from calling xf86MatchDevice (), and represent the
active config file device sections relevant to the driver. PCIchipsetsisa
table that provides a mapping between the PCI device IDs, the driver’s
internal chipset tokens and a list of fixed resources.

When a device section doesn’t have a BusID entry it can only match the
primary video device. Secondary devices are only matched with device
sections that have a matching BusID entry.

Once the preliminary matches have been found, a final match is confirmed
by checking if the chipset override, ChipID override or probed PCI chipset
type match one of those given in the chipsets and PCIchipsets lists.
The PCIchipsets list includes a list of the PCI device IDs supported by
the driver. The list should be terminated with an entry with PCI ID -1".
The chipsets list is a table mapping the driver’s internal chipset tokens
to names, and should be terminated with a NULL entry. Only those entries
with a corresponding entry in the PCIchipsets list are considered. The
order of precedence is: config file chipset, config file ChipID, probed PCI
device ID.

In cases where a driver handles PCI chipsets with more than one vendor
ID, it may set vendorID to 0, and OR each devID in the list with (the ven-
dor ID << 16).

XFree86® server 4.x Design (DRAFT)

Entity index numbers for confirmed matches are returned as an array via
foundEntities. The PCI information, chipset token and device section
for each match are found in the EntityInfoRec referenced by the
indices.

The function return value is the number of confirmed matches. A return
value of -1 indicates an internal error. The returned foundEntities
array should be freed by the driver with xfree () when it is no longer
needed in cases where the return value is greater than zero.

int xf86MatchIsalnstances(const char *driverName,

SymTabPtr chipsets, IsaChipsets *ISAchipsets,
DriverPtr drvp, FindIsaDevProc FindIsaDevice,
GDevPtr *devList, int numDevs, int **foundEntities)

This function finds matches between ISA cards that a driver supports and
config file device sections. It is intended for use in the ChipProbe ()
function of drivers for ISA cards. devList and numDevs are typically
those found from calling x£86MatchDevice (), and represent the active
config file device sections relevant to the driver. ISAchipsets is a table
that provides a mapping between the driver’s internal chipset tokens and
the resource classes. FindIsaDevice is a driver-provided function that
probes the hardware and returns the chipset token corresponding to what
was detected, and -1 if nothing was detected.

If the config file device section contains a chipset entry, then it is checked
against the chipsets list. When no chipset entry is present, the FindIs-
aDevice function is called instead.

Entity index numbers for confirmed matches are returned as an array via
foundEntities. The chipset token and device section for each match are
found in the EntityInfoRec referenced by the indices.

The function return value is the number of confirmed matches. A return
value of -1 indicates an internal error. The returned foundEntities
array should be freed by the driver with xfree () when it is no longer
needed in cases where the return value is greater than zero.

25

These two helper functions make use of several core functions that are available at the driver

level:

XFree86® server 4.x Design (DRAFT) 26

Bool xf86ParsePciBusString(const char *busID, int *bus,
int *device, int *func)

Takes a BusID string, and if it is in the correct format, returns the PCI bus,
device, func values that it indicates. The format of the string is expected
to be "PCIL:bus:device:func" where each of ‘bus’, ‘device’ and ‘func’ are dec-
imal integers. The "func" part may be omitted, and the func value
assumed to be zero, but this isn’t encouraged. The "PCI" prefix may also
be omitted. The prefix "AGP" is currently equivalent to the "PCI" prefix. If
the string isn’t a valid PCI BusID, the return value is FALSE.

Bool xf86ComparePciBusString(const char *busID, int bus,
int device, int func)
Compares a BusID string with PCI bus, device, func values. If they
match TRUE is returned, and FALSE if they don't.
Bool xf86ParselsaBusString(const char *busID)
Compares a BusID string with the ISA bus ID string ("ISA" or "ISA:"). If
they match TRUE is returned, and FALSE if they don’t.
Bool xf86CheckPciSlot (int bus, int device, int func)
Checks if the PCI slot bus:device:func has been claimed. If so, it
returns FALSE, and otherwise TRUE.
int xf86ClaimPciSlot (int bus, int device, int func, DriverPtr
drvp,

int chipset, GDevPtr dev, Bool active)

This function is used to claim a PCI slot, allocate the associated entity
record and initialise their data structures. The return value is the index of
the newly allocated entity record, or -1 if the claim fails. This function
should always succeed if x£86CheckPciSlot () returned TRUE for the
same PCI slot.

Bool xf86IsPrimaryPci (void)

This function returns TRUE if the primary card is a PCI device, and FALSE
otherwise.

int xf86ClaimIsaSlot (DriverPtr drvp, int chipset,
GDevPtr dev, Bool active)

This allocates an entity record entity and initialise the data structures. The
return value is the index of the newly allocated entity record.

Bool xf86IsPrimaryIsa(void)

This function returns TRUE if the primary card is an ISA (non-PCI) device,
and FALSE otherwise.

Two helper functions are provided to aid configuring entities:

XFree86® server 4.x Design (DRAFT) 27

ScrnInfoPtr xf86ConfigPciEntity(ScrnInfoPtr pScrn,
int scrnFlag, int entityIndex,
PciChipsets *p_chip,
reslList res, EntityProc init,

EntityProc enter, EntityProc leave,

pointer private)

ScrnInfoPtr xf86ConfigIsaEntity(ScrnInfoPtr pScrn,
int scrnFlag, int entityIndex,
IsaChipsets *i_chip,
reslList res, EntityProc init,

EntityProc enter, EntityProc leave,
pointer private)

These functions are used to register the non-relocatable resources for an
entity, and the optional entity-specific Init, Enter and Leave functions.
Usually the list of fixed resources is obtained from the Isa/PciChipsets
lists. However an additional list of resources may be passed. Generally
this is not required. For active entities a ScrnInfoRec is allocated if the
pScrn argument is NULL. The return value is TRUE when successful. The
init, enter, leave functions are defined as follows:

typedef void (*EntityProc) (int entityIndex,

pointer private)

They are passed the entity index and a pointer to a private scratch area.
This can be set up during Probe () and its address can be passed to
xf86ConfigIlsaEntity() and xf86ConfigPciEntity () as the last
argument.

These two helper functions make use of several core functions that are available at the driver
level:

XFree86® server 4.x Design (DRAFT) 28

void xf86ClaimFixedResources (resList list, int entityIndex)

This function registers the non-relocatable resources which cannot be dis-
abled and which therefore would cause the server to fail immediately if
they were found to conflict. It also records non-relocatable but sharable
resources for processing after the Probe () phase.

Bool xf86SetEntityFuncs(int entityIndex, EntityProc init,
EntityProc enter, EntityProc leave, pointer)
This function registers with an entity the init, enter, leave functions
along with the pointer to their private area.
void xf86AddEntityToScreen(ScrnInfoPtr pScrn, int entityIndex)

This function associates the entity referenced by entityIndex with the
screen.

9.3.2 Prelnit Phase

During this phase the remaining resources should be registered. PreInit () should call
x£86GetEntityInfo () to obtain a pointer to an EntityInfoRec for each entity it is able to
drive and check if any resource are listed in its resources field. If resources registered in the
Probe phase have been rejected in the post-Probe phase (resources is non-NULL), then the
driver should decide if it can continue without using these or if it should fail.

EntityInfoPtr xf86GetEntityInfo(int entityIndex)

This function returns a pointer to the EntityInfoRec referenced by
entityIndex. The returned EntityInfoRec should be freed with
xfree () when no longer needed.

Several functions are provided to simplify resource registration:
Bool xf86IsEntityPrimary(int entityIndex)

This function returns TRUE if the entity referenced by entityIndex is the
primary display device (i.e., the one initialised at boot time and used in
text mode).

Bool xf86IsScreenPrimary(int scrnIndex)

This function returns TRUE if the primary entity is registered with the
screen referenced by scrnIndex.

pcivVideoPtr xf86GetPciInfoForEntity(int entityIndex)

This function returns a pointer to the pcivideoRec for the specified
entity. If the entity is not a PCI device, NULL is returned.

The primary function for registration of resources is:

XFree86® server 4.x Design (DRAFT)

resPtr xf86RegisterResources(int entityIndex, resList list,
int access)

This function tries to register the resources in 1ist. If list is NULL it tries
to determine the resources automatically. This only works for entities that
provide a generic way to read out the resource ranges they decode. So far
this is only the case for PCI devices. By default the PCI resources are regis-
tered as shared (ResShared) if the driver wants to set a different access
type it can do so by specifying the access flags in the third argument. A
value of 0 means to use the default settings. If for any reason the resource
broker is not able to register some of the requested resources the function
will return a pointer to a list of the failed ones. In this case the driver may
be able to move the resource to different locations. In case of PCI bus enti-
ties this is done by passing the list of failed resources to xf86Reallo—
catePciResources (). When the registration succeeds, the return value
is NULL.

resPtr xf86ReallocatePciResources (int entityIndex, resPtr pRes)

This function takes a list of PCI resources that need to be reallocated and
returns NULL when all relocations are successful. xf86RegisterRe—
sources () should be called again to register the relocated resources with
the broker. If the reallocation fails, a list of the resources that could not be
relocated is returned.

Two functions are provided to obtain a resource range of a given type:
resRange xf86GetBlock (long type, memType size,
memType window_start, memType window_end,
memType align_mask, resPtr avoid)

This function tries to find a block range of size size and type type in a
window bound by window_start and window_end with the alignment
specified in align_mask. Optionally a list of resource ranges which
should be avoided within the window can be supplied. On failure a zero-
length range of type ResEnd will be returned.

resRange xf86GetSparse(long type, memType fixed_bits,
memType decode_mask, memType address_mask,
resPtr avoid)

This function is like the previous one, but attempts to find a sparse range
instead of a block range. Here three values have to be specified: the
address_mask which marks all bits of the mask part of the address, the
decode_mask which masks out the bits which are hardcoded and are
therefore not available for relocation and the values of the fixed bits. The
function tries to find a base that satisfies the given condition. If the func-
tion fails it will return a zero range of type ResEnd. Optionally it might be
passed a list of resource ranges to avoid.

XFree86® server 4.x Design (DRAFT) 30

Some PCI devices are broken in the sense that they return invalid size information for a certain
resource. In this case the driver can supply the correct size and make sure that the resource range
allocated for the card is large enough to hold the address range decoded by the card. The func-
tion xf86FixPciResource () can be used to do this:

Bool xf86FixPciResource (int entityIndex, unsigned int prt,
CARD32 alignment, long type)

This function fixes a PCI resource allocation. The prt parameter contains
the number of the PCI base register that needs to be fixed (0-5, and 6 for
the BIOS base register). The size is specified by the alignment. Since PCI
resources need to span an integral range of size 2" n, the alignment also
specifies the number of addresses that will be decoded. If the driver speci-
fies a type mask it can override the default type for PCI resources which is
ResShared. The resource broker needs to know that to find a matching
resource range. This function should be called before calling xf86Regis-
terResources (). The return value is TRUE when the function succeeds.

Bool xf86CheckPciMemBase (pciVideoPtr pPci, memType base)

This function checks that the memory base address specified matches one
of the PCI base address register values for the given PCI device. This is
mostly used to check that an externally provided base address (e.g., from a
config file) matches an actual value allocated to a device.

The driver may replace the generic access control functions for an entity. This is done with the
xf86SetAccessFuncs():

XFree86® server 4.x Design (DRAFT) 31

void xf86SetAccessFuncs (EntityInfoPtr pEnt,
xf86SetAccessFuncPtr funcs,
xf86SetAccessFuncPtr oldFuncs)

with:

typedef struct {
xf86AccessPtr mem;
xf86AccessPtr io;
xf86AccessPtr io_mem;
} xf86SetAccessFuncRec, *xf86SetAccessFuncPtr;

The driver can pass three functions: one for I/O access, one for memory
access and one for combined memory and I/O access. If the memory
access and combined access functions are identical the common level
assumes that the memory access cannot be controlled independently of
I/0 access, if the I/O access function and the combined access functions
are the same it is assumed that I/O can not be controlled independently. If
memory and I/O have to be controlled together all three values should be
the same. If a non NULL value is passed as third argument it is interpreted
as an address where to store the old access record. If the third argument is
NULL it will be assumed that the generic access should be enabled before
replacing the access functions. Otherwise it will be disabled. The driver
may enable them itself using the returned values. It should do this from
its replacement access functions as the generic access may be disabled by
the common level on certain occasions. If replacement functions are speci-
fied they must control all reso