X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6.4

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Coarse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, ygarson obtaining a cgpof this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein fgpanpose. lis provided “as is’'without express or implied
warranty.

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Hayree€hiik

and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)

Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Tggiari (Digital SDT)

Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also desemention. Althoughthe X11 Intrinsics present an
entirely different programming style, theorrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smoley Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 tootk&imple widgets were by the al@pas well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 Intrinsics.

Thanks go to Al Mento of Digitad UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of BeyKeleextenstely reviewing early
drafts of it.

Finally, a ecial thanks to Mii& Chow, whose extense performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March 1988

Xi

The current design of the Intrinsics has benefited greatly from the inpwetdlsgedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals hae cedicated significant time to suggesting im@raents to the Intrin-

sics:

Steve Rtschlke (Stellar) C.Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (A&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Exas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dw (HP) GlennWidener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3 to Release 4jesal nav members joined the design tealVe geatly appreciate
the thoughtful comments, suggestions, lepgliscussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Comerse (MIT) Clive Feather (1XI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational processyfof man

us, and Bill and Frang'tutelage has carried us througVania Jolobof of the OSF also contrib-

uted to the internationalization additions. The implementation efforts of Bill, Gabe Beged-Do
and especially Donna Cearse for this release are also gratefully acknowledged.

Ralph R. Swick
December 1989

and
July 1991

Xii

The Release 6 Intrinsics is a result of the collabezadforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengti discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. yTtiesene recognition and thanks for their

major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)
Vania Jolobaf (OSF) KalebKeithley (X Consortium)
Courtngy Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people dedmamks for their contributions:

Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Gypts&ith Edwards, Clie
FeatherStephen Gildea, Dan Helle®teve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-

bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGildeVill Walker, and Mike Wexer.

| am especially grateful to tew of my lleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithlg for leadership in the implementation and the specification work.

Donna Comerse
X Consortium
April 1994

Xiii

About This Manual

X Toolkit Intrinsics — C Languge Interfaceis intended to be read by both application program-
mers who will use one or more of the mavidget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, hower, gpplies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is likely to useynmagre, if not all, of the Intrinsics functions

in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application program(hés assumed the widget pro-
grammer will hae © be familiar with all the information.) Therefore, all entries in the table of
contents that are printed fild indicate the information that should be of special interest to an
application programmer.

It is also assumed that, as application programmers become more familiar with the concepts dis-
cussed in this manual, thwiill find it more comwvenient to implement portions of their applica-

tions as special-purpose or custom widgets. It is possible, nonetheless, to use widgets without
knowing hav to build them.

Conventions Used in this Manual
This document uses the following eentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printeditalics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
General discussion of the function, ifyas required, follows the arguments.

. To diminate ary ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiewr, in the case of multiple arguments, the wepacify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn.

Xiv

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network wingosystem, specifically the X WindoSystem. Thdntrinsics
and a widget set malkup an X Dolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and applicationvéronments. Theéntrinsics are a layer on top of Xlib, the C Library
X Interface. Thg extend the fundamental abstractions provided by the X Wir8gstem while

still remaining independent of wiparticular user interface polior gyle.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and compaosing user interface components, known as widgets. This allows program-
mers to extend a widget set inmneays, either by deriving mewidgets from existing ones (sub-
classing) or by writing entirely mewidgets following the established a@ntions.

When the Intrinsics were first coneed, the root of the object hierarcivas a widget class

named Core. In Release 4 of the Intrinsics, three nonwidget superclasses were age€drabo
These superclasses are described in Chapter 12. The name of thewlasth@ooot of the

Intrinsics class hierarghs Object. Theremainder of this specification refers uniformlyiial-
getsandCoreas if thegy were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually means “widgetor ‘‘object”

1.2. Languages

The Intrinsics are intended to be used far pogramming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X displayhe Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather thatuby \Whdnterfaces primarily

intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming@aions apply In this specification, the teralient

refers to ap module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the headeXfll#8ntrinsic.h >
and <X11/StringDefs.h>, or their eqwalent, and thg may also include X11/Xatoms.h> and
<X11/Shell.r>. In addition, widget implementations should includéld/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

X Toolkit Intrinsics X11 Release 6.4

The applications must also include the additional header files for each widget clasy/that the
to use (for example, X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). Ona ROSIX-based sys-
tem, the Intrinsics object library file is namidalXt.a and is usually referenced as —IXt when
linking the application.

1.3. Pmocedures and Macros

All functions defined in this specification except those specifiedviaky be implemented as C
macros with aguments. Gpplications may us&tundef’ to remaove a nacro definition and

ensure that the actual function is referencedy srch macro will expand to a single expression
that has the same precedence as a function call and/ghsttes each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do natehfunction equialents and that may expand
their arguments in a manner other than that describas:aktiCheckSubclass XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X windav and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointeegbdard input, and others change their dis-
play in response to input and camdke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allable on widgets of that class. Logicallywidget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physj@iljdget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constantheans the class structure is initialized at compile time avet ne
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is crdaseflijther informa-

tion, see Section 2.5.

The distribution of the declarations and code forwa welget class among a public .h file for
application programmer use, ayate .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to thesgorsn

A widget instance is composed ofatarts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is cus-
tomizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

X Toolkit Intrinsics X11 Release 6.4

1.4.1. Coe Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined®@gréd®@assPartand CorePart
structures.

1.4.1.1. CoeClassPart Structure
All widget classes contain the fields defined in @weClassPartstructure.

' typedef struct {

-

WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;

XtWidgetClassProc class_part_initialize;

XtEnum class_inited;

XtInitProc initialize;

XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;

Cardinal num_actions;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;

Boolean compress_motion;
XtEnum compress x@osure;
Boolean compress_entenea
Boolean visible_interest;
XtWidgetProc destrg
XtWidgetProc resize;
XtExposeProcgose;
XtSetValuesFunc setalues;
XtArgsFunc set_alues_hook;
XtAlmostProc set_alues almost;
XtArgsProc get_alues_hook;
XtAcceptFocusProc accept_focus;
XtVersionType ersion;

XtPointer callback_pvite;

String tm_table;
XtGeometryHandler query_geometry;
XtStringProc display_accelerator;
XtPointer etension;

} CoreClassPart;

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6

See Section 1.6
See Section 1.6

See Section 2.5
See Section 2.5
See Section 2.6

See Chapter 10
See Chapter 10

See Chapter 9

See Chapter 9
Rdte to resource manager

See Section 7.9

Se&ection 7.9

See Section 7.9
See Section 7.10

SeeSection 2.8
See Chapter 6

Se&ection 7.10

Se&ection 9.7
SeBection 9.7
Segection 9.7
SeBection 9.7

See Section 7.3

Seé&ection 1.6

Prvate to callbacks
See Chapter 10

See Chapter 6

See Chapter 10

Se&ection 1.6

All widget classes hae the Core class fields as their first component. The prototyyicddet-
Classand CoreWidgetClassare defined with only this set of fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are
In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h :

extern WidgetClass widgetClass, coreWidgetClass;

The opaque typew/idget and WidgetClassand the opaque variableidgetClassare defined

for generic actions on widgets. In order to m#ilese types opaque and ensure that the compiler
does not allev applications to access pate data, the Intrinsics use incomplete structure defini-
tions in Intrinsic.h :

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CoePart Structure
All widget instances contain the fields defined in @wePart structure.

X Toolkit Intrinsics

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destyed,;

XtCallbackList destrg_callbacks;

XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed,;
Boolean sensiE;
Boolean ancestor_sensgij
XtTranslations accelerators;
Pixel border_pirl;
Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;
Colormap colormap;
Window window;

Cardinal depth;

Pixel background_p#;

Pixmap background_pixmap;

Boolean visible;

Boolean mapped_when_managed;

} CorePart;

Described below
See Section 1.6
See Section 2.5
SeeSection 2.8
Se&ection 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
SeeSection 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
SeeSection 2.6
See Section 2.6
See Section 7.10
See Chapter 3

X11 Release 6.4

All widget instances hae the Core fields as their first component. The prototypical Wdget

is defined with only this set of fields.

typedef struct {
CorePart core;

} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to ma& these types opaque and ensure that the compiler does moggliications to
access pviate data, the Intrinsics use incomplete structure definitiohgtiimsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

X Toolkit Intrinsics

1.4.1.3. Coe Resources

X11 Release 6.4

The resource names, classes, and representation types specifiecbie@lassReaesource list

are

Name

Class Representation

XtNaccelerators
XtNbackground

XtNbackgroundPixmap

XtNborderColor
XtNborderPixmap
XtNcolormap
XtNdepth

XtCAccelerators XtRAcceleratorTable

XtCBackground XtRPixel
XtCPixmap XtRPixmap
XtCBorderColor XtRPixel
XtCPixmap XtRPixmap
XtCColormap XtRColormap
XtCDepth XtRInt

XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean

XtNscreen
XtNtranslations

XtRScreen
XtRranslationTable

XtCScreen
XtCTanslations

Additional resources are defined for all widgets viadhgctClassRecandrectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CoePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Detault Value

self Addresf the widget structure (may not be changed).
widget_class widget_clasargument taXtCreateWidget (may not be changed).
parent parentargument toXtCreateWidget (may not be changed).

being_destrged
destry_callbacks
constraints

X

y

width

height
border_width
managed
sensitve
ancestor_sensit
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

Rarent'sbeing_destroyedalue.
NULL
NULL

False

True

logical AND of parent'ssensitiveandancestor_sensitivealues.
NULL

XtDefaultForeground

XtUnspecifiedPixmap

NULL
0

nameargument taXtCreateWidget (may not be changed).

X Toolkit Intrinsics X11 Release 6.4

screen Paent'sscreentop-level widget gets screen from display specifier
(may not be changed).

colormap Rrent'scolormapvalue.

window NULL

depth Rrent'sdepth top-level widget gets root winde depth.

background_pixel XtDefaultBackground

background_pixmap XtUnspecifiedPixmap

visible True

mapped_when_man- True

aged

XtUnspecifiedPixmapis a symbolic constant guaranteed to be unequalteadia Pixmap id,
None, and ParentRelative.

1.4.2. CompositéNidgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by t@ompositeClassPartand CompositePart structures.

1.4.2.1. CompositeClassit Structure
In addition to the Core class fields, widgets of the Composite clasdheafollowing class fields.

typedef struct {
XtGeometryHandler geometry _manager; See Chapter 6
XtWidgetProc change _managed,; See Chapter 3
XtWidgetProc insert_child,; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
XtPointer etension; Se&ection 1.6

} CompositeClassPart;

The extension record defined fGompositeClassPartwith record_typeequal toNULLQ UARK
is CompositeClassExtensionRec

typedef struct {
XtPointer next_etension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allovs_change_managed_set; Seetion 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes¥mthe Composite class fields immediately following the Core class fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are
In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;

In Intrinsic.h :

extern WidgetClass compositeWidgetClass;

The opaque type€ompositeWidgetand CompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant fo€tmapositeClassExtensiorversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12)ntrinsic.h uses an incom-

plete structure definition to ensure that the compiler catches attempts to acebssiata.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositeBrt Structure

In addition to the Core instance fields, widgets of the Composite chasdhkeollowing instance
fields defined in th€ompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets va the Composite instance fields immediately following the Core instance
fields.

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. CompositdResources

The resource names, classes, and representation types that are specifiedmptsiteClass-
Recresource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList

XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositeBrt Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Defuult Value
children NULL
num_children 0
num_slots 0

insert_position Interndlinction to insert at end

Thechildren, num_childrenandinsert_positiorfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read blyesnt but
should only be modified by the composite widget class procedures.

1.4.3. ConstraintWidgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’geometry The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

X Toolkit Intrinsics X11 Release 6.4

1.4.3.1. ConstraintClassBrt Structure

In addition to the Core and Composite class fields, widgets of the Constraint vladwtfal-
lowing class fields.

typedef struct {

XtResourcelList resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destryg SeeSection 3.6
XtSetValuesFunc setalues; Se&ection 9.7.2
XtPointer extension; Se&ection 1.6

} ConstraintClassPart;

The extension record defined fGonstraintClassPart with record_typeequal toNULLQ UARK
is ConstraintClassExtensionRec

typedef struct {
XtPointer next_gtension; Se&ection 1.6.12
XrmQuark record_type; See Section 1.6.12
long \ersion; Se&ection 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_alues_hook; SeBection 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes athe Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are
In IntrinsicP.h :

extern ConstraintClassRec constraintClassRec;

In Intrinsic.h :

10

X Toolkit Intrinsics X11 Release 6.4

extern WidgetClass constraintwidgetClass;

The opaque type€onstraintWidget and ConstraintWidgetClass and the opaque variabt®n-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant forGbastraintClassExtensionversion identi-

fier is XtConstraintExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to aceatssdatia.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

1.4.3.2. ConstraintRart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint etabeha
following unused instance fields defined in ®enstraintPart structure

typedef struct {
int empty;
} ConstraintPart;

Constraint widgets @ the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access pviate data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. ConstraintResources

The constraintClassReccore_classandconstraint_class resourcédiglds are NULL, and the
num_resourceBelds are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

11

X Toolkit Intrinsics X11 Release 6.4

1.5. Implementation-SpecificTypes

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics defineveral types whose precise representation is explicitly dependent
upon, and chosen pgach individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzeatue. Unles&xplicitly stated, clients
should not assume that the nonzero value is equal to the symbolicTvakie

Cardinal An unsigned integer datum with a minimum range of [0..2716-1].
Dimension An unsigned integer datum with a minimum range of [0..2°16-1].
Position A signed integer datum with a minimum range of [-2715..2715-1].

XtPointer A datum large enough to contain the largest of a char*, int*, function postrtea-
ture pointeror long \alue. Apointer to ag type or function, or a long value may
be cowerted to anXtPointer and back again and the result will compare equal to
the original wlue. INANSI C environments it is expected théPointer will be
defined as void*.

XtArgVal A datum large enough to contain AtPointer, Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct valoas, which
are the symbolic valuekr ue andFalse. The symbolic valueIRUE andFALSE
are also defined to be equalTioue and False, respectiely.

In addition to these specific types, the precise order of the fields within the structure declarations
for ary of the instance part recor@bjectPart, RectObjPart, CorePart, CompositePart,

ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. Thesstructures may also @ additional private fields internal to the implementation.

The ObjectPart, RectObjPart, and CorePart structures must be defined so that emember

with the same name appears at the same off€@bjectRec, RectObjRec, and CoreRec (Wid-
getReg. Noother relations between the offsets of &mo fields may be assumed.

1.6. Widget Classing

Thewidget_clasdield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; ratiteey implement procedures, called methods, that are
available through their widget class structure. These methodsvakeihby generic procedures

that ewelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed fauthetassing reduces the
amount of code and declarations necessary t@asw widget class that is similar to an exist-

ing class.For example, you do not va o describe eery resource your widget uses in AtRe-
sourcelist. Instead, you describe only the resources your widget has that its superclass does not.
Subclasses usually inherit nyaof their superclasses’ procedures (for example, the expose proce-
dure or geometry handler).

Subclassing, hower, can be taken too faif you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether yeuti@sen the most appropriate
superclass.

12

X Toolkit Intrinsics X11 Release 6.4

To make good use of subclassing, widget declarations and namingyaions are highly styl-
ized. Awidget consists of three files:

A public .h file, used by client widgets or applications.
A private .h file, used by widgets whose classes are subclasses of the widget class.
A .c file, which implements the widget.

1.6.1. Wdget Naming Corventions

The Intrinsics provide a vehicle by which programmers can creatvitigets and ayanize a
collection of widgets into an applicatiofo ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writingweavidgets:

Use the X library naming ceentions that are applicablé-or example, a record compo-

nent name is all lowercase and uses underscores (_) for compound words (for example,
background_pixmap). ype and procedure names start with uppercase and use capitaliza-
tion for compound words (for examplargList or XtSetValues).

A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscofi@ let the compiler catch spelling errors, each

resource name shouldyeaa gmbolic identifier prefixed with “XtN'. For example, the
background_pixmafield has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string “backgroundPixmiapgviany predefined names are listed in
<X11/StringDefs.h>. Beforeyou irvent a n&v name, you should makaure there is not
already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth' Eachresource class string shouldveaa ymbolic
identifier prefixed with “XtC’ (for example, XtCBorder\Wdth). Mary predefined classes
are listed in X11/StringDefs.h>.

A resource representation string is spelled identically to the type name (for example,

“ TranslationTablej. Eachrepresentation string shouldveaa ymbolic identifier prefixed
with “XtR’’ (for example, XtRranslation@able). Mary predefined representation types are
listed in <X11/StringDefs.h>.

New widget classes start with a capital and use uppercase for compotasl WBven a
new class name AbcXyz, you should derisveaal names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

Action proceduresvailable to translation specifications should fallthe same naming
corventions as procedures. That is,tteart with a capital letteand compound names
use uppercase (for example, “Highlighlahd “NotifyClient”).

13

X Toolkit Intrinsics X11 Release 6.4

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global
symbols, or as a mixture of thedw The(implicit) type of the identifier isString. The pointer
value itself is not significant; clients must not assume that inequalitycoitiewntifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environmentasthitro-

duce the possibility of multiple definition conflicts when applications attempt to use indepen-
dently deeloped widgets simultaneously.

1.6.2. Wdget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of therasources that this widget adds to
its superclass. The definitions shouldda &ngle space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for gmew resource data types defined by the class.

. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for ne class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

[* C Widget type definition */
typedef struct _LabelRec *LabelWidget;
/* New class method entry points */
extern void LabelSe@Ext();
/* Widget w */
[* String text */

extern String LabelGe&x();
/* Widget w */

#endif LABEL_H

14

X Toolkit Intrinsics X11 Release 6.4

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned thatyttalready may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget clésa. example, the public .h file for the Constraint
widget class iConstraint.h.

1.6.3. Wdget Subclassing in Pwate .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

. A reference to the public .h file for the class.
. A reference to the prite .h file for the superclass.

. Symbolic identifiers for aynew resource representation types defined by the class. The
definitions should ha a ingle space between the definition name and the value and no
trailing space or comment.

. A structure part definition for the wdields that the widget instance adds to its superclass’s
widget structure.

. The complete widget instance structure definition for this widget.

. A structure part definition for the wdields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

. The complete constraint structure definition if the widget class is a subclass of Constraint.

. Type definitions for annew procedure types used by class methods declared in the widget
class part.

. A structure part definition for the wdields that this widget class adds to its superclass’s
widget class structure.

. The complete widget class structure definition for this widget.
. The complete widget class extension structure definition for this widgey, if an
. The symbolic constant identifying the class extension versiony.if an

. The name of the global class structure variable containing the generic class structure for
this class.

. An inherit constant for each weprocedure in the widget class part structure.
For example, the following is the psite .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */

typedef struct {
/* Settable resources */

15

X Toolkit Intrinsics X11 Release 6.4

Pixel foreground;

XFontStruct *font;

String label, [* text to display */

XtJustify justify;

Dimension internal_width; [* # pixels horizontal border */
Dimension internal_height; [* # pixels vertical border */

/* Data derved from resources */
GC normal_GC;
GC gray_GC,;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensig;
} L abelPart;

/* Full instance record declaration */
typedef struct _LabelRec {
CorePart core;
LabelPart label;
} L abelRec;

/* Types for Label class methods */
typedef void (*LabelSe@xtProc)();
/* Widget w */
[* String text */

typedef String (*LabelGe8xtProc)();
[* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetE&xtProc set_text;
LabelGetExtProc get_text;
XtPointer extension;
} L abelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} L abelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

16

X Toolkit Intrinsics X11 Release 6.4

#define LabellnheritSeé€ki((LabelSet€xtProc) Xtinherit)
#define LabellnheritGeekt((LabelGetExtProc) Xtinherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name ofatee.lpri
file is the first nine characters of the widget class followed by a capikrexample, the prate
.h file for the Constraint widget class@®nstrainP.h.

1.6.4. Wdget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-
tains the following parts:

. Class information (for examplsuperclassclass_namgwidget sizeclass_initialize and
class_initedl.

. Data constants (for examplesourcesandnum_resourcesactionsandnum_actiongsvisi-
ble_interestcompress_motigrcompress_exposurand versior).

. Widget operations (for examplijtialize, realize, destroy resize expose set_values
accept_focusand ary new perations specific to the widget).

Thesuperclasdield points to the superclass global class record, declared in the superukiss pri
.h file. For direct subclasses of the generic core widgeperclasshould be initialized to the
address of thevidgetClassRecstructure. Theuperclass is used for class chaining operations
and for inheriting or ereloping a superclassgerations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_namdield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “LabeMore than one widget class can share the
same text class name. This string must be permanently allocated prior to or durkegtiiere

of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizdield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consisteng checking of the X Toolkit and widgets in an applicatidiidget writers must set it to
the implementation-defined symbolic valdé/ersion in the widget class structure initialization.
Those widget writers who belie that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special vaftiéersionDontCheck in theversionfield to
disable version checking for those widgets. If a widget needs to compile altemoale for dif-
ferent revisions of the Intrinsics interface definition, it may use the syKiBglecificationRe-
lease as cescribed in Chapter 13. Use XtVersion allows the Intrinsics implementation to rec-
ognize widget binaries that were compiled with older implementations.

Theexensionfield is for future upward compatibilityf the widget programmer adds fields to

class parts, all subclass structure layouts change, requiring complete recompilaitbow

clients to aoid recompilation, an extension field at the end of each class part can point to a record
that contains gnadditional class information required.

All other fields are described in their respeetiections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

17

X Toolkit Intrinsics

/* Resources specific to Label */

static XtResource resources[] ={

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,

XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

/* Forward declarations of procedures */
static void Classlnitialize();

static void Initialize();
static void Realize();
static void Setéxt();
static void Getéxt();

/* Class record constant */

LabelClassRec labelClassRec = {

{

[* core_class fields */

[* superclass

[* class_name

[* widget_size

[* class_initialize

[* class_part_initialize
[* class_inited

[* initialize

[* initialize_hook

* realize

[* actions

/* num_actions

[* resources

/* num_resources

[* xrm_class

[* compress_motion
[* compress_gposure
[* compress_enterlea
[* visible_interest

[* destrgy

[* resize

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

18

X11 Release 6.4

(WidgetClass)&coreClassRec,

"Label",
sizeof(LabelRec),
Classlinitialize,
NULL,

False,

Initialize,

NULL,

Realize,

NULL,

0,

resources,
XtNumber(resources),
NULLQ UARK,
True,

True,

True,

False,

NULL,

Resize,

X Toolkit Intrinsics X11 Release 6.4

[* expose * Redisplay,
[* set_\alues */ SetValues,
/* set_\alues_hook * NULL,
/* set values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
[* version */ XtVersion,
[* callback_ofsets */ NULL,
[*tm_table * NULL,
[* query_geometry */ XtInheritQueryGeometry
[* display_accelerator */ NULL,
/* extension */ NULL

3

{

/* Label_class fields */

/* get_text */ GetText,
[* set_tet */ Set’lext,
/* extension */ NULL

}

2

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSet&xt(w, text)

Widget w;
String text;

{
Label WidgetClass Iwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(WabelWidgetClass, NULL);
*(lwc->label_class.set_text)(viext)

}

[* Private procedures */

1.6.5. Wdget Class and Superclass Look Up
To dbtain the class of a widget, u¥¢Class.

WidgetClass XtClass()
Widgetw;

w Specifies the widget. Must be of class Object graaibclass thereof.

The XtClass function returns a pointer to the widgetlass structure.

19

X Toolkit Intrinsics X11 Release 6.4

To dbtain the superclass of a widget, u@Superclass

WidgetClass XtSuperclasg(
Widgetw;

w Specifies the widget. Must be of class Object graaibclass thereof.

The XtSuperclassfunction returns a pointer to the widgesiperclass class structure.

1.6.6. Wdget Subclass Verification
To check the subclass to which a widget belongs Xit&Subclass

Boolean XtlsSubclasa(widget_clask
Widgetw;,
WidgetClassvidget_class

w Specifies the widget or object instance whose class is to beechelglustbe of
class Object or ansubclass thereof.

widget_class Specifies the widget class for which to test. MustljectClassor ary subclass
thereof.

The XtlsSubclassfunction returnsTr ue if the class of the specified widget is equal to or is a
subclass of the specified class. The widgeaéiss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items ylemntain can us&tlsSubclassto find out if a widget belongs

to the desired class of objects.

To test if a gven widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equalent to XtisSubclassfor each of the built-in classes. These proce-
dures areXtlsObject, XtIsRectObj, XtlsWidget, XtlIsComposite, XtlsConstraint , Xtls-

Shell, XtlsOverrideShell, XtiswMShell , XtisVendorShell, XtlsTransientShell, XtlsTo-
pLevelShell, XtisApplicationShell, and XtisSessionShell

All these macros and functionsveathe same argument description.

Boolean Xtlsclass> (w)
Widgetw;

w Specifies the widget or object instance whose class is to beechelgkustbe of
class Object or gnsubclass thereof.

These procedures may be faster than caMitigSubclassdirectly for the built-in classes.

To check a widges dass and to generate a debugging error messag&iQbeckSubclass
defined in X11/IntrinsicP.h >:

20

X Toolkit Intrinsics X11 Release 6.4

void XtCheckSubclass(, widget _classmessge)
Widgetw;,
WidgetClassvidget_class
Stringmessge

w Specifies the widget or object whose class is to be eldedWlustbe of class
Object or ag subclass thereof.

widget_class Specifies the widget class for which to test. MusbhjectClassor ary subclass
thereof.

messge Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widgedéiss can be gmumber of subclasses down the

chain and need not be an immediate subclass of the specified class. If the specifiesl dadget’

is not a subclass{tCheckSubclassconstructs an error message from the supplied message, the
widget's ectual class, and the expected class and galisrorMsg . XtCheckSubclassshould

be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Supeclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structuk®gh a linked field, the Intrinsics access the

field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). Theself-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version
allocate
deallocate

In Composite widget classes: geometry _manger

change_manged
insert_child

21

X Toolkit Intrinsics X11 Release 6.4

delete_child
accepts_objects
allows_change_mamgad_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_maruger

With downward superclass chaining, theotation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widgetlass structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields ofabestraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources

initialize

set_values

get_values_hook

With upward superclass chaining, theacation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field@bnstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Clasdnitialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some casegefhowe
a dass may need to register type wenters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does nethaitialization procedures that arevoked automatically

when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsids class initialization procedure pointer is of type
XtProc:

22

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class,
but for subclasses as well, and are done in the sldas’s part initialization procedure, a pointer

to which is stored in thelass_part_initializdield. Theclass_part_initialize procedure pointer is

of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClassvidget_class

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These proveduees ha
responsibility of doing andynamic initializations necessary to their clagsirt of the record.

The most common is the resolution of@nherited methods defined in the claBsr example, if

a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core § dass_part_initialize procedure. This resolveyg iaumerited Core methods and com-

piles the textual representations of the resource list and action table that are defined in the class
record. Neat, Composites dass_part_initialize procedure is called to initialize the composite part
of C's dass record. Finall{the class_part_initialize procedures for A, B, and C, in that cader
called. for further information, see Section 1.6.9. Classes that do not defimewrdass fields

or that need no extra processing for them can specify NULL ioléiss_part_initializdield.

All widget classes, whether théavea dass initialization procedure or not, must start with their
class_initedield False.

The first time a widget of a class is creatéti;reateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass lbydiecking eaclelass_initedield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then selag® initedield to a nonzero value.

After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void Classinitialize()

{
XtSetTypeCouerter(XtRString, XtRJustifyCvtStringToJustify,

NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class grsaclass is createdlo initialize a
widget class without creating awidgets, usextinitializeWidgetClass.

23

X Toolkit Intrinsics X11 Release 6.4

void XtInitializeWidgetClassgbject _clasy
WidgetClas®bject_class

object_class Specifies the object class to initialize. MaydigectClassor ary subclass
thereof.

If the specified widget class is already initializ&dinitializeWidgetClass returns immediately.

If the class initialization procedure registers typeveders, these type coerters are not\ail-
able until the first object of the class or subclass is creat&tnitializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritanceof Superclass Operations

A widget class is free to useyaof its superclass’slf-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operatioryz specify the constanXtinherit Xyzin your class record.

Every class that declares annprocedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are vee inherited. Vilget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclassvalue for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal valu&inherit cast to the appropriate type Xtin-

herit is a procedure that issues an error message if it is actually called.

For example,CompositeP.hcontains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _Xtinherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)

#define XtinheritDeleteChild ((XtWidgetProc) _Xtinherit)

Composites dass_part_initialize procedure begins as follows:

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;

CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtinheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

24

X Toolkit Intrinsics X11 Release 6.4

}

if (wc->composite_class.change _managed == XtinheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare apreserved value it wishes for the inheritance constant foridietds. Theollowing
inheritance constants are defined:

For Object:
XtinheritAllocate
XtInheritDeallocate

For Core:
XtInheritRealize
XtInheritResize
XtInheritExpose
XtInheritSetValuesAlmost
XtinheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtinheritDisplayAccelerator

For Composite:
XtInheritGeometryManager
XtinheritChangeManaged
XtInheritinsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

1.6.11. Irvocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not cheenexample, a wid-
get’s expose procedure might call its superclasgfmseand then perform a little more work on
its ovn. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclasiisert_childand then calling{tManageChild to add
the child to the managed set.

25

X Toolkit Intrinsics X11 Release 6.4

Note

A class method should not u¥g¢Superclassbut should instead call the class

method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers qmigt the widgess dass pointers, as the wid-

get's dass may be a subclass of the class whose implementation is being referenced.

This technique is referred to esvelopinghe superclass’gperation.

1.6.12. Clas€xtension Records

It may be necessary at times to add fields to already existing widget class structurks per-

mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointéno extension fields for a classVveyet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint, and Shell classes, sub-
classes can provide values for these fields by settingxigsgsionpointer for the appropriate part

in their class structure to point to a statically declared extension record containing the additional
fields. Settingheextensionfield is n&er mandatory; code that uses fields in the extension record
must alvays check thextensionfield and tak sme appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from exsémgle
sionfield, extension records should be declared as a linked list, and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

2

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typefield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list.rédoed_typefield is normally

assigned the result ®frmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with theotaéharacters “XT’ for future standard uses. The

value NULLQ UARK may also be used by the class part owner in extension records attached to its
own dass part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary filestbat ha
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Theecord_sizdfield value includes the four common header fields and

26

X Toolkit Intrinsics X11 Release 6.4

should normally be initialized witkizeof).

Any value stored in the class part extension field€@ipositeClassPart ConstraintClass-
Part , or ShellClassPartmust point to an extension record conforming to this definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, gen a widget class and the offset of tegensionfield in the class record.

To locate a class extension record, X$8etClassExtension

XtPointer XtGetClassExtensiantjject classbyte offsettype version record_sizé
WidgetClas®bject_class
Cardinalbyte_offset
XrmQuarktype
long version
Cardinalrecord_size

object_class Specifies the object class containing the extension list to be searched.

byte offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.
version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required
for a match, or 0.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is noxt&etClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the extension
owner.

27

X Toolkit Intrinsics X11 Release 6.4

Chapter 2

Widget Instantiation

A hierarcly of widget instances constitutes a widget tree. The shell widget returnsthpy
pCreateShellis the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no childrey kindrare the lezes o

the widget tree With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Wivdtree.

Widgets can be either composite or priwgti Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the ctasapositeWidgetClassare containers for an
arbitrary but widget implementation-defined, collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the @@mpositavidgets

also contain methods for managing the geometry (layout)yodtald widget. Under unusual cir-
cumstances, a composite widget mayehzero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known
classes themselves and do not expect external clients to do so.venwdgets also do not ke
general geometry management methods.

In addition, the Intrinsics recuxdy perform mawy operations (for example, realization and
destruction) on composite widgets and all their children. Prienitidgets that hae cildren
must be prepared to perform the recwesiperations themselves on behalf of their children.

A widget tree is manipulated byvaeal Intrinsics functionsFor example, XtRealizeWidget tra-
verses the tree downward and recuatsi realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resourceséréhe tree
upward and determine the inheritance of resources from a védgegstors. XtMake-
GeometryRequesttraverses the tree up onevi and calls the geometry manager that is respon-
sible for a widget child geometry.

To facilitate upward tngersal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thaXtAppCreateShell returns has parentpointer of NULL.

To facilitate downward trzersal of the widget tree, thahildren field of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite wilgsimetry managerPrimitive widgets

that instantiate children are entirely responsible for all operations that require downwashlra
belov themseles. Inaddition, @ery widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can callyamtrinsics function other thaKktSetLanguageProcand
XtToolkitThreadlnitialize , it must initialize the Intrinsics by using

. XtToolkitInitialize , which initializes the Intrinsics internals

28

X Toolkit Intrinsics X11 Release 6.4

. XtCreateApplicationContext, which initializes the per-application state
. XtDisplaylnitialize or XtOpenDisplay, which initializes the per-display state
. XtAppCreateShell, which creates the root of a widget tree

Or an application can call the a@nience procedur&tOpenApplication , which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should calXtSetLanguageProcprior to callingXtDisplaylnitialize , XtOpenDisplay,
XtOpenApplication, or XtApplnitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatotséndependently of grother instance.

Further an gplication instance may need multiple display connectionswue Walgets on multi-

ple displays. From the applicatieoint of view, multiple display connections usually are

treated together as a single unit for purposes@ftalispatching.To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed
to distinguish one application instance from anotfiére major component of an application

context is a list of one or more Bisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultanedwsidling input in a round-

robin fashion. Theapplication context typXtAppContext is opaque to clients.

To initialize the Intrinsics internals, usé&ToolkitInitialize .

void XtToolkitInitialize()

If XtToolkitInitialize was previously called, it returns immediatelyWhen XtToolkitThrea-
dinitialize is called beforeXtToolkitlnitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To aeate an application context, ugeCreateApplicationContext.

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Ewery application must lva & least one application context.

To destrgy an gplication context and closeyaremaining display connections in it, useDe-
stroyApplicationContext.

void XtDestroyApplicationContex&pp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application crntédf called
from within an @ent dispatch (for example, in a callback procedux¢lestroyApplication-
Context does not destgothe application context until the dispatch is complete.

29

X Toolkit Intrinsics X11 Release 6.4

To get the application context in which avgh widget was created, usgdWidgetToApplica-
tionContext.

XtAppContext XtWidgetToApplicationContext]
Widgetw;,

w Specifies the widget for which you want the application cantelustbe of class
Object or ag subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, Xtf8splaylnitialize .

void XtDisplaylnitialize@pp_contextdisplay, application_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Display *display,
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argy,

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the hame of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptionsargument is passed as a parametertoParseC-
ommand. For further information, see Section 15.9lib — C Lan-
guage X hterfaceand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retriees the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls thexXxiiiParseCommand function to parse

the command line, and performs other per-display initialization. AfterParseCommand has
been calledargc andargv contain only those parameters that were not in the standard option ta-
ble or in the table specified by thptionsargument. Ifthe modifiedargcis not zero, most appli-
cations simply print out the modifiedgv along with a message listing the allble options. On
POSIX-based systems, the application name is usually the final compoaenf@f. If the

30

X Toolkit Intrinsics X11 Release 6.4

synchronous resource Ts ue, XtDisplaylnitialize calls the XlibXSynchronize function to put
Xlib into synchronous mode for this display connection arydotimers currently open in the
application contet. SeeSections 2.3 and 2.4 for details on #mpplication_namegapplica-
tion_classoptions and num_optionarguments.

XtDisplaylnitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

To open a displayinitialize it, and then add it to an application context, XiKepenDisplay.

Display *XtOpenDisplaydpp_contextdisplay_stringapplication_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Stringdisplay_string
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argyv;

app_context Specifies the application context.
display_string Specifies the display string, or NULL.
application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies hw to parse the command line foryaapplication-specific
resources. Theptions argument is passed as a parameféridarseC-
ommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifiedlisplay_string If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified imargv, the users default display is retried from the environ-
ment. OnNPOSIX-based systems, this is the value ofQI&PLAY environment variable.

If this succeedsXtOpenDisplay then callsXtDisplaylnitialize and passes it the opened display
and the value of the —name option specifiedrgv as the application name. If no —name option
is specified andpplication_names non-NULL, application_namés passed tXtDisplayIni-

tialize. If application_namés NULL and if the environment variabRESOURCE_NAME is

set, the value ORESOURCE_NAME is used. Otherwise, the application name is the name used
to invoke the program. On implementations that conform to ANSI C Hosted Environment sup-
port, the application name will lz@g\[0] less aw directory and file type components, that is, the
final component o&rg\V0], if specified. Ifarg0] does not exist or is the empty string, the appli-
cation name is “main”. XtOpenDisplay returns the newly opened display or NULL if it failed.

See Section 7.12 for informatiorgaeding the use oKtOpenDisplay in multiple threads.

31

X Toolkit Intrinsics X11 Release 6.4

To dose a display and reme it from an application context, ud@CloseDisplay.

void XtCloseDisplaydisplay)
Display *display,

display Specifies the display.

The XtCloseDisplay function callsXCloseDisplay with the specifiedlisplayas soon as it is

safe to do so. If called from within amenmt dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only callXtCloseDisplay if they are to continue xecuting after closing the display; other-
wise, thg should call XtDestroyApplicationContext.

See Section 7.12 for informatiorgaeding the use oKtCloseDisplay in multiple threads.

2.2. Establishingthe Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of ifie&anguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display,
Stringlanguage
XtPointerclient_data

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client_data Passes the additional client data specified in the callt&etLanguageProc

The language procedure allows an application to set the locale to the value of the language
resource determined B¥tDisplaylnitialize . The function returns a melanguage string that

will be subsequently used IXtDisplaylnitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics intes meemory.

Initially, no language procedure is set by the Intrinsits.set the language procedure for use by
XtDisplaylnitialize , use XtSetLanguageProc

32

X Toolkit Intrinsics X11 Release 6.4

XtLanguageProc XtSetLanguagePmf contextproc, client_datg
XtAppContextapp_context
XtLanguageProgproc,
XtPointerclient_data

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called fabDisplaylnitialize

for all subsequent Displays initialized in the specified application xionté app_contexis

NULL, the specified language procedure is registered in all application contexts created by the
calling process, including griuture application contexts that may be createdord€is NULL,

a default language procedure is registerédSetLanguageProcreturns the previously regis-

tered language procedure. If a language procedure has not yet been registered, the return value is
unspecified, but if this return value is used in a subsequent céibeil anguageProg it will

cause the default language procedure to be registered.

The default language procedure does the following:

. Sets the locale according to thevennment. OPANSI C-based systems this is done by
calling setlocald LC_ALL , language). If an error is encountered, a warning message is
issued withXtWarning .

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued Xitharning and the locale is set to “C”".

. Calls XSetLocaleMadifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocalg LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by ¢éietl. anguage-
Proc prior to XtDisplaylnitialize , as in he following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loadingthe Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display It then creates a resource database for the default screen of the display by combining the
following sources in ordewith the entries in the first named source having highest precedence:

. Application command lineafgc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

33

X Toolkit Intrinsics X11 Release 6.4

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.
. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either,iaternally
when XtScreenDatabasds called), it is created in the following manner using the sources listed
above in the same order:

. A temporary database, the “server resource database”, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the usamme directory On POSIX-based systems, the usual
name for this user preference resource file is $HOXAEfaults.

. If a language procedure has been XéDisplaylnitialize first searches the command line
for the option “-xnlLanguage”, or for a -xrm option that specifies the xnlLanguage/Xnl-
Language resource, as specified by Section 2.4. If such a resource is found, the value is
assumed to be entirely in XPCS, the X Portable Character Set. If neither option is specified
on the command linetDisplaylnitialize queries the server resource database (which is
assumed to be entirely in XPCS) for the resonaraexnlLanguage classClassXnlLan-
guagewherenameandClassare theapplication_namendapplication_classpecified to
XtDisplaylnitialize . The language procedure is thendked with the resource value if
found, else the empty string. The string returned from the language proceduveel isa
all future references in the Intrinsics that require the per-display language string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

. If a language procedure has not been set, the initial database is then queried for the resource
namexnlLanguage classClassXnlLanguage as specified abe. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment ariable. Ifno language string is found, the empty string is
used. Thidanguage string is 8ead for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the usarvironment resource file is then merged
into the initial resource database if the fikéses. Thisfile is user-, host-, and process-spe-
cific and is expected to contain user preferences that avertide those specifications in
the per-display and per-screen resources. On POSIX-based systems, shewisan-
ment resource file name is specified by the value cXKENVIRONMENT environment
variable. Ifthis environment variable does not exist, the gd®rme directory is searched
for a file namedXdefaults-host, wherehostis the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. Thesespecifications are the string returnedXfycreenResourceStringor the
respectre sreen and are owned entirely by the user.

34

X Toolkit Intrinsics X11 Release 6.4

. Next, the server resource database created earlier is merged into the screen resource data-
base. Theerver propertyand corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by thdloghidie
name is found by callingirmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then cétitesolvePathnamewith
the parametersd{splay, NULL, NULL, NULL, path NULL, O, NULL), wherepathis
defined in an operating-system-specific weyn POSIX-based systempathis defined to
be the value of the environment varialléSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. Thigefault value is constrained in the following manner:

— |If the environment variablEAPPLRESDIR is not defined, the defaulUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

%C,%N, %L or %C,%N, %I, %t, %c
%C,%N, %l

%C,%N

%N, %L or %N, %I, %t, %c
%N, %l

%N

ok wnpE

The order of these six entries within the path must bevas gbove. The order and
use of substitutions within avgn entry are implementation-dependent.

— If XAPPLRESDIR is defined, the defaukUSERFILESEARCHPATH must contain at
least seen entries. Thesentries must contain the following directory prefixes and sub-

stitutions:

1. $XAPPLRESDIR with %C,%N, %L or %C,%N, %I, %t, %c
2. $XAPPLRESDIR with %C, %N, %l

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
5. $XAPPLRESDIR with %N, %ol

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these gen entries within the path must be as@i above. The order and
use of substitutions within avgn entry are implementation-dependent.

. Last, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain sitewide customizations
specified by the system manag&he name of the application class resource file is found

35

X Toolkit Intrinsics X11 Release 6.4

by calling XtResolvePathnamewith the parameterslisplay, “app-defaults”, NULL,

NULL, NULL, NULL, 0, NULL). This file is expected to be provided by theveleper of

the application and may be required for the application to function progedimple

application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specificationgtjhSetFallback-
Resources Note that the customization substitution string is reédeynamically by
XtResolvePathnameso that the resolved file name of the application class resource file

can be affected by grof the earlier sources for the screen resource databasgheugh

the contents of the class resource fileehawest precedence. After callingtRe-
solvePathname the original display-associated database is restored.

To dbtain the resource database for a particular screerstGseeenDatabase

XrmDatabase XtScreenDatabaszéen
Screen Screen

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specifias] abo
associated with the specified screen. If the spedfiezbndoes not belong to Risplay initial-
ized by XtDisplaylnitialize , the results are undefined.

To dbtain the default resource database associated with a particular,displdtDatabase.

XrmDatabase XtDatabaghbgplay)
Display *display,

display Specifies the display.

The XtDatabasefunction is equialent to XrmGetDatabase. It returns the database associated
with the specified displapr NULL if a database has not been set.

To ecify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources liste}] abe
XtAppSetFallbackResources

void XtAppSetFallbackResourceg(p_contextspecification_list
XtAppContextapp_context
String *specification_list

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry irspecification_lispoints to a string in the format dfrmPutLineResource. Fol-
lowing a call toXtAppSetFallbackResources when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class

36

X Toolkit Intrinsics X11 Release 6.4

resource file according to the ruleseagyi above and if specification_lists not NULL, the resource
specifications irspecification_liswill be merged into the screen resource database in place of the
application-specific class resource fildtAppSetFallbackResourcesis not required to copy
specification_listthe caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or uitiRppSetFallbackResourcesis

called agin. Thevalue NULL for specification_listemoves any previous fallback resource spec-
ification for the application cormte Theintended use for fallback resources is to provide a mini-
mal number of resources that will neake application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Rarsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

—display Specifiethe display name foXOpenDisplay.
—name Setthe resource name prefix, whicherides the application name passed to
XtOpenDisplay.

—xnllanguage Specifighe initial language string for establishing locale and for finding appli-
cation class resource files.

XtDisplaylnitialize has a table of standard command line options that are passedRar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbigions. Theormat of this table is described in Section 15.9

in Xlib — C Languge X hterface

typedef enum {

XrmoptionNoAIg, /* Value is specified in OptionDescRec.value */
XrmoptionIsAmg, [* Value is the option string itself */
XrmoptionStickyAg, /* Value is characters immediately following option */
XrmoptionSepAg, /* Value is next argument in argv */
XrmoptionResAg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipAg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNAgs, /*Ignore this option and the next */
/* OptionDescRec.value arguments in argv */

XrmoptionSkipLine [*Ignore this option and the rest of argv */

} X rmOptionKind;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind agKind; /* Location of the resource value */
XPointer alue; /*Value to provide if XrmoptionNoAg */

} X rmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

37

X Toolkit Intrinsics

Option String

Resource Name

Argument Kind

Resource Value

X11 Release 6.4

—background *pbackground SepAg next argument
-bd *borderColor SepAg next argument
-bg *background SepAg next argument
—borderwidth .border\dth SepAg next argument
—bordercolor *borderColor SepAg next argument
—bw .borderVitith SepAg next argument
—display display SepAyr next argument
—fg *foreground SepAg next argument
-fn *font SepAg next argument
—font *font SepAg next argument
—foreground *forground SepAy next argument
—geometry .geometry Sep@\r next argument
—iconic .conic NoAg “true”

—name .name Sepgr next argument
—reverse reerseMdeo NoAg “on”

-rv reverseMdeo NoAg “on”

+rv reverseMdeo NoAg “off"”
—selectionTmeout .selectionTimeout Sepd\r next argument
—synchronous .synchronous NaAr “on”
+synchronous .synchronous Na@Ar “off"”

—title title SepAg next argument
—xnllanguage xnlLanguage SepAg next argument
=Xrm net agument ResAy next argument
—xtsessionID .sessionlD SepAg next argument

Note that ap unigque abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo isTr ue, the values oXtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. Ifavalue is found in the resource database during display initializati@splaylnitial-

ize makes a call t&(Synchronize for all display connections currently open in the application
contt. Thereforewhen multiple displays are initialized in the same application context, the

most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
contxt. Whenmultiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting esource in an application. The next argument
should be a quoted string identical in format to a line in the user resourdedfilexample, to

give a ed background to all command buttons in an application naméd you can start it up

as

xmh —xrm '’xmh*Command.background: red’

38

X Toolkit Intrinsics X11 Release 6.4

When it parses the command lin@Pisplaylnitialize merges the application option table with

the standard option table before calling the XitmParseCommand function. Anentry in the
application table with the same name as an entry in the standardvearbiges the standard table

entry If an gption name is a prefix of another option name, both names are kept in the merged ta-
ble. Thelntrinsics reserg dl option names beginning with the characters “-&br future stan-

dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. Thewidgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottomvwastabof the
widget tree.

3. Thewidgets create X windows, which then are mapped.

To dart the first phase, the application caliCreateWidget for all its widgets and adds some

(usually most or all) of its widgets to their respetiparents’ managed set by callidgMan-

ageChild. To avoid anO(n?) creation process where each composite widget lays itself out each

time a widget is created and managed, parent widgets are not notified of changes in their managed
set during this phase.

After all widgets hge keen created, the application caXitRealizeWidget with the top-leel

widget to eecute the second and third phasedRealizeWidget first recursiely traverses the
widget tree in a postorder (bottom-upvesal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed s&binves geometry layout and possibly geometry negoti-
ation. Aparent deals with constraints on its size imposed fromeafor example, when a user
specifies the application windsize) and suggestions made from belfor example, when a

primitive child computes its preferred size). One difference between theanvcause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its childre¥ou cannot predict where anything will go on the screen

until this process finishes.

Consequentlyin the first and second phases, no X windows are actually created, because it is
likely that they will get moved aound after creation. Thisvaids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-dovwsrgal of the
widget tree, allocates an X wingldo each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Crating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource namesglard.vThesare passed as
an arglist, a pointer to an array Afg structures, which contains

39

X Toolkit Intrinsics X11 Release 6.4

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;

whereXtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the sizeXtPagVal , the resource value is
stored directly irvalue otherwise, a pointer to it is storedvalue

To =t values in arirgList , use XtSetArg.

void XtSetArg@rg, name valug
Arg arg;
Stringname
XtArgVal value
arg Specifies th@mame/valugair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in 4tArgVal , ese the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg ags[20];

int n;

n=0

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

XtSetValues(widget, args, n);
Alternatively, an gplication can statically declare the argument list andXiseimber :

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

¥

XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-decre-
ment within the first argument f6tSetArg. XtSetArg can be implemented as a macro that
evduates the first argument twice.

To merge tvwo aglist arrays, us&tMergeArgLists .

40

X Toolkit Intrinsics X11 Release 6.4

ArgList XtMergeArgLists@rgsl, num_argslargs2 num_args2
ArgList argsl
Cardinalnum_argsi
ArgList args2
Cardinalnum_args2

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by usingtFree.

All Intrinsics interfaces that requirrglList arguments ha analogs conforming to the ANSI C
variable argument list (traditionally called “varargs”) calling eention. Thename of the analog
is formed by prefixing “Va'to the name of the correspondiAggList procedure; e.g.,
XtVaCreateWidget. Each procedure hamettVasomethingakes as its last arguments, in place
of the correspondindrgList / Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of tgreng and each value is of typ&ArgVal . The end

of the list is identified by aameentry containing NULL. Deelopers writing in the C language
wishing to pass resource name and value pairsytofahese interfaces may use thgyList and
varargs forms interchangeably.

Two special names are defined for use only in varargs ¥s¥@aTypedArg and XtVaNest-
edList.

#define XtVaTypedAg "XtVaTypedArg"

If the nameXtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted asaane/type/value/sizaplewherename is of typestring, typeis of
type String, valueis of type XtArgVal , and sizeis of type int. When a varargs list containing
XtVaTypedArg is processed, a resource typevasion (see Section 9.6) is performed if neces-
sary to cowert the value into the format required by the associated resourtygel XtRString,
thenvaluecontains a pointer to the string asidecontains the number of bytes allocated, includ-
ing the trailing null byte. Itypeis not XtRString, theif size is less than or equal to
sizeofXtArgVal), the value should be the data cast to the ¥fgegVal , otherwisevalueis a
pointer to the data. If the type a@nsion fails for ag reason, a warning message is issued and
the list entry is skipped.

41

X Toolkit Intrinsics X11 Release 6.4

#define Xt\ANestedList "Xt@NestedList"

If the nameXtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as aftVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULMarargs lists may nest to yadepth.

To dynamically allocate a varargs list for use wXtVaNestedList in multiple calls, use
XtVaCreateArgsList .

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(nused...)
XtPointerunused
unused This argument is not currently used and must be specified as NULL.
Specifies variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer which may be used witKtVaNestedList. The end of both lists is identified byname

entry containing NULL. A entries of typextVaTypedArg are copied as specified without
applying conersions. Datgpassed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed usftigree when no longer needed.

Use of resource files and of the resource database is generally encousadenigtty arglist or
varargs lists whener possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance
To areate an instance of a widget, b&€reateWidget.

42

X Toolkit Intrinsics X11 Release 6.4

Widget XtCreateWidget@me object_classparent args, num_arg3

St
Wi
Wi

ringname
idgetClas®bject_class
idgetparent

ArgList args
Cardinalnum_args

name

Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the sanyeotiseanvid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. MusijbetClassor

paren
args

ary subclass thereof.
t Specifies the parent widget. Must be of class Objectysclass thereof.
Specifies the argument list tearide ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing

the fo

llowing in order:

Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

If the specified class is nobreWidgetClassor a subclass thereof, and the pasedéss is
a abclass ofcompositeWidgetClassand either no extension record in the paseaim-
posite class part extension field exists withrdwerd_typeNULLQ UARK or the
accepts_objectfeld in the extension record igalse, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

If the specified class contains an extension record in the object clasdqraionfield

with record_typeNULLQ UARK and theallocatefield is not NULL, the procedure is

invoked to dlocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parentistraints

and stores the address of this memory intctmstraintsfield. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes theonstraintsfield.

Initializes the Core nonresource data fieddl§ parent widget_classbeing_destroyed
name manayed, window; visible popup_list and num_popups

Initializes the resource fields (for examgdackground_pix@lby using theCoreClassPart
resource lists specified for this class and all superclasses.

If the parent is a member of the clasmistraintWidgetClass, initializes the resource
fields of the constraints record by using @enstraintClassPart resource lists specified
for the parens dass and all superclasses ugtmstraintWidgetClass.

Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widges initialize procedure.

If the parent is a member of the classstraintWidgetClass, calls theConstraintClass-
Part initialize procedures, starting abnstraintWidgetClasson down to the parent’s
ConstraintClassPart initialize procedure.

If the parent is a member of the classnpositeWidgetClass puts the widget into its par-
ent’s children list by calling its parertt'insert_child procedurek-or further information,

43

X Toolkit Intrinsics X11 Release 6.4

see Section 3.1.

To aeate an instance of a widget using varargs listsXtigaCreateWidget.

Widget XtVaCreateWidget@me object_classparent ...)
Stringname
WidgetClas®bject_class
Widgetparent

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. MuijbetClassor
ary subclass thereof.

parent Specifies the parent widget. Must be of class Objectysclass thereof.
Specifieshe variable argument list taoverride ary other resource specifications.

The XtVaCreateWidget procedure is identical in function ¥tCreateWidget with theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Crating an Application Shell Instance

An application can hee rrultiple top-level widgets, each of which specifies a unique widget tree
that can potentially be on different screens or displays. An applicatiorXtispsCreateShell
to create independent widget trees.

Widget XtAppCreateSheliame application_classwidget_classdisplay, args num_arg}
Stringname
Stringapplication_class
WidgetClassvidget_class
Display *display,
ArgList args
Cardinalnum_args

name Specifies the instance name of the shell widgetatheis NULL, the appli-
cation name passed ¥iDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_namstring whernwidget_classs applicationShellWidgetClassor a
subclass thereof.

widget_class Specifies the widget class for the topdeavidget (e.g..applicationShell-
WidgetClasy.

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list teasride ary other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a meshell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scaargafpr the XtNscreen

44

X Toolkit Intrinsics X11 Release 6.4

argument. Ifno XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resmacescreen, clas€lassScreen where

Classis the specifiedpplication_classf widget_classs applicationShellwWidgetClassor a

subclass thereof. fiidget_classs notapplicationShellWidgetClassor a subclass;lassis the
class_naméield from theCoreClassPartof the specifieavidget_class If this query fails, the

default screen of the specified display is used. Once the screen is determined, the resource data-
base associated with that screen is used tovetdieemaining resources for the shell widget not
specified inargs. The widget name andlassas determined albe ae used as the leftmost (i.e.,

root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the nam€lassas determined abe
will be stored into thavM_CLASS property on the widget'window when it becomes realized.
If the specifiedvidget classs applicationShellWidgetClassor a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To aeate multiple top-kel shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real togelshell and create the others as pop-up children of it
by usingXtCreatePopupShell

. Haveall shells as pop-up children of an unrealized tmgtishell.

The first method, which is best used when there is a clear choice for what is the maim windo
leads to resource specificationglike following:

xmail.geometry:... (thenain window)
xmail.read.geometry:... (thread window)
Xmail.compose.geometry:... (tcempose window)

The second method, which is best if there is no main winlgads to resource specifications like
the following:

xmail.headers.geometry:... (theaders window)
xmail.read.geometry:... (tread window)
xmail.compose.geometry:... (ttempose window)

To aeate a top-hel widget that is the root of a widget tree using varargs listsXigaAppCre-
ateShell

45

X Toolkit Intrinsics X11 Release 6.4

Widget XtVaAppCreateSheliame application_classwidget_classdisplay; ...)
Stringname
Stringapplication_class
WidgetClasavidget _class

Display *display,

name Specifies the instance name of the shell widgehatfieis NULL, the
application name passedXaDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_nametring whenwidget classs applicationShellWidgetClass
or a subclass thereof.

widget_class Specifies the widget class for the topdavidget.

display Specifies the display for the default screen and for the resource database

used to retrige the shell widget resources.

Specifieshe variable argument list tov@ride ary other resource specifi-
cations.

The XtVaAppCreateShell procedure is identical in function XtAppCreateShell with theargs
andnum_arggarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Cowenience Procedue to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application maXi@eenApplication or
XtVaOpenApplication .

46

X Toolkit Intrinsics X11 Release 6.4

Widget XtOpenApplicatiorgpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback resourceswvidget_classargs, num_arg$
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_ouf
String *argv_in_out
String *fallback_resources
WidgetClassvidget_class
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

args Specifies the argument list teapride ary other resource specifications
for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtOpenApplication function callsXtToolkitInitialize followed by XtCreateApplication-
Context, then callsXtOpenDisplay with display_stringNULL andapplication_naméNULL,
and finally callsXtAppCreateShell with nameNULL, the specifiedvidget_classan agument
list and count, and returns the created shell. The recommevidget classs sessionShellwid-
getClass The argument list and count are created by merging the spexijieandnum_args
with a list containing the specifietigc andargv. The modifiedargc andargv returned by
XtDisplaylnitialize are returned imrgc_in_outandargv_in_out If app_context_returis not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issuekt@pinApplication terminates the appli-
cation. Iffallback_resourcess non-NULL, XtAppSetFallbackResourcesis called with the
value prior to callingXtOpenDisplay.

47

X Toolkit Intrinsics X11 Release 6.4

Widget

XtVaOpenApplicatiompp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback resourceswidget class...)

XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options

int *argc_in_ouf

String *argv_in_out

String *fallback_resources

WidgetClasavidget _class
app_context_return Returns the application context, if non-NULL.
application_class Specifies the class name of the application.
options Specifies the command line options table.
num_options Specifies the number of entriesaptions
argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file

cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass

or a subclass.

Specifieshe variable argument list tavverride ary other resource specifi-
cations for the created shell.

The XtVaOpenApplication procedure is identical in function XtOpenApplication with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Wdget Instance Allocation: The allocate Procedure
A widget class may optionally provide an instance allocation procedure @ifjleetClassEx-

tension

record.

When the call to create a widget includes a varargs list contaitvaglypedArg , these argu-
ments will be passed to the allocation procedure iKtdgpedArgList .

typedef struct {

String name;
String type;
XtArgVal value;
int size;

} X tTypedArg, *XtTypedArgList;

The allocate procedure pointer in &jectClassExtensionrecord is of typeXtAllocateProc.

48

X Toolkit Intrinsics X11 Release 6.4

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);
WidgetClassvidget_class
Cardinal*constraint_sizg
Cardinal*more_bytes
ArglList args
Cardinal*num_args
XtTypedArgListtyped_args
Cardinal*num_typed_args
Widget*new_return
XtPointer* more_bytes_return

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or 0.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as@i in the call to create the widget.

num_args Specifies the number of arguments.

typed_args Specifies the list of typed argumentsegi in the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of
error.

more_bytes_return Returns the auxiliary memory if it was requested, or NULL if requested
and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record wiord_typeequal toNULLQ UARK is
located through the object class patensionfield and theallocatefield is not NULL, theXtAl-
locateProcwill be invoked to dlocate memory for the widget. If no ObjectClassPart extension
record is declared wittecord_type equaio NULLQ UARK , then XtInheritAllocate and XtIn-
heritDeallocate are assumed. If n¥tAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

. Allocate memory for the widget instance and return itaw_return The memory must be
at leaswc->core_class.widget_sizg/tes in length, double-word aligned.

. Initialize thecore.constraintsfield in the instance record to NULL or to point to a con-
straint record. Itonstraint_sizés not 0, the procedure must allocate memory for the con-
straint record. The memory must be double-word aligned.

. If more_byte$s not 0, then the address of a block of memory at teast_bytedn size,
double-word aligned, must be returned inihare_bytes_returparameteror NULL to
indicate an error.

A class allocation procedure thatvelops the allocation procedure of a superclass must rely on

the eweloped procedure to perform the instance and constraint allocation. Allocation procedures
should refrain from initializing fields in the widget record except to store pointers to newly allo-
cated additional memaoryJnder no circumstances should an allocation procedure thabpes

its superclass allocation procedure modify fields in the instance past sfigrclass.

49

X Toolkit Intrinsics X11 Release 6.4

2.5.6. Wdget Instance Initialization: The initialize Procedure
The initialize procedure pointer in a widget class is of t{faitProc .

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);

Widgetrequest
Widgetnew
ArgList args
Cardinal num_args
request Specifies a copof the widget with resource values as requested by the argument
list, the resource database, and the widget defaults.
new Specifies the widget with thewevalues, both resource and nonresource, that are
actually allowed.
args Specifies the argument list passed by the client, for computingedleesource

values. Ifthe client created the widget using a varargs foryresources speci-
fied via XtVaTypedArg are comerted to the widget representation and the list is
transformed into thérgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

. Allocates space for and copieyaasources referenced by address that the client is
allowed to free or modify after the widget has been credtedexample, if a widget has a
field that is aString, it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string andittapthe nev space.
Widgets that do not cgmne or more resources referenced by address should clearly so
state in their user documentation.

Note
It is not necessary to allocate space for or toy @aiback lists.

. Computes values for unspecified resource fieks.example, ifwidth andheightare zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its owvidth andheightwithin the initial-
ize, initialize_hook, set_values, and set_values_hook procedures; see Chapter
6.

. Computes values for uninitialized nonresource fields that areeddrom resource fields.
For example, graphics contexts (GCs) that the widget uses avedi&om resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal congistBocexample, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists hae been initialized. The initialize procedure does not need to exaanysand
num_argsf all public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its

50

X Toolkit Intrinsics X11 Release 6.4

superclasses.

If a subclass does not need an initialization procedure because it does not need to pgdbrm an
the aboe qerations, it can specify NULL for theitialize field in the class record.

Sometimes a subclass may wantverarite values filled in by its superclass. In particusizre
calculations of a superclass often are incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass.dispiaig case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs tw imnts superclass’sze was calculated by

the superclass or was specified explicityl widgets must place themselves into whatesize is
explicitly given, but thg should compute a reasonable size if no size is requested.

Therequestandnewarguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclassquest

widget is a cop of the widget as initialized by the arglist and resource databaseneliheidget

starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so farA subclass initialize procedure can compare thesd¢dawesohe any potential
conflicts.

In the aboe example, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontiaéh andheightfields in thenew
widget. Ifnot, it must ma& do with the size originally specified.

Thenewwidget will become the actual widget instance record. Therefore, the initialization pro-
cedure should do all its work on thewwidget; therequestwidget should neer be nodified. If

the initialize procedure needs to calyanutines that operate on a widget, it should spewfy

as the widget instance.

2.5.7. Constraintinstance Initialization: The ConstraintClassPart initialize Procedure

The constraint initialization procedure pointieund in theConstraintClassPart initialize field

of the widget class record, is of typ@lnitProc . The values passed to the parent constraint ini-
tialization procedures are the same as those passed to the d¢add'widget initialization proce-
dures.

Theconstraintdfield of therequestwidget points to a cgopof the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should computecanstraint fields devied from con-
straint resources. It can makurther changes to threewwidget to mak the widget and gnother
constraint fields conform to the specified constraints, for example, changing the s\ddgedr
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
theinitialize field of theConstraintClassPart in the class record.

2.5.8. NonwidgetData Initialization: The initialize_hook Procedure

51

X Toolkit Intrinsics X11 Release 6.4

Note

The initialize_hook procedure is obsolete, as the same informatiow iavaitable
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of tygArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArglList args
Cardinal num_args

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the widget
using a varargs form, gmesources specified viétVaTypedArg are comerted
to the widget representation and the list is transformed intAihleist format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if thimitialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. RealizingWidgets
To realize a widget instance, uX¢RealizeWidget.

void XtRealizeWidgetf)
Widgetw;

w L Specifies the widget. Must be of class Core grsabclass thereof.

If the widget is already realizeXtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:

. Binds all action names in the widgetranslation table to procedures (see Section 10.1.2).

. Makes a postorder trarsal of the widget tree rooted at the specified widget and calls each

non-NULL change_managed procedure of all composite widgets treatia or more
managed children.

. Constructs arKSetWindowAttributes structure filled in with information desed from
the Core widget fields and calls the realize procedure for the widget, which gdsislan
get-specific attributes and creates the X wimdo

. If the widget is not a subclass ampositeWidgetClass XtRealizeWidget returns; oth-
erwise it continues and performs the following:

- Descends recurgily to each of the widget'managed children and calls the realize
procedures. Primite widgets that instantiate children are responsible for realizing
those children themselves.

52

X Toolkit Intrinsics X11 Release 6.4

- Maps all of the managed children windows thatelmaapped_when_maged Tr ue.
If a widget is managed butapped_when_maged is False, the widget is allocated
visual space but is not displayed.

If the widget is a top-leel shell widget (that is, it has no parent), andpped_when_maged is
True, XtRealizeWidget maps the widget winda

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged and XtDestroy-
Widget maintain the following imariants:

. If a composite widget is realized, then all its managed children are realized.

. If a composite widget is realized, then all its managed children tkat ha
mapped_when_maged Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. Whertalling the realize or change_managed procedures for children of a composite wid-
get, XtRealizeWidget calls the procedures inu&se order of appearance in tBempositePart

children list. By default, this ordering of the realize procedures will result in the stacking order of
ary newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To check whether or not a widget has been realizedXtisRealized.

Boolean XtlsRealizedy)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtIsRealized function returnsTr ue if the widget has been realized, that is, if the widget has
a ronzero windw ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Wdget Instance Windav Creation: The realize Procedure
The realize procedure pointer in a widget class is of KtiiealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widgetw;
XtValueMask *value_mask
XSetWindowAttributes attributes

w Specifies the widget.
value_mask Specifies which fields in thetributesstructure are used.
attributes Specifies the winde attributes to use in th¥CreateWindow call.

The realize procedure must create the widgatidow.

53

X Toolkit Intrinsics X11 Release 6.4

Before calling the class realize procedure, the genéRealizeWidget function fills in a mask
and a correspondingSetWindowAttributes structure. lisets the following fields iattributes
and corresponding bits iralue_maskased on information in the widget core structure:

. Thebackground_pixmafor background_pixef background_pixmajs XtUnspecified-
Pixmap) is filled in from the corresponding field.

. Theborder_pixmagor border_pixelif border_pixmaps XtUnspecifiedPixmap) is filled
in from the corresponding field.

. The colormapis filled in from the corresponding field.

. Theewent_masilis filled in based on thevent handlers registered, theeat translations
specified, whether theqposefield is non-NULL, and whetharisible_interests Tr ue.

. Thebit_gravityis set toNorthWestGravity if the exposefield is NULL.

These or another fields in attributes and the corresponding bitalne _maskan be set by the
realize procedure.

Note that because realize is not a chained operation, the widget class realize procedure must
update theXSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined fooreWidgetClasscalls XtCreateWindow with the passed
value_maslandattributesand withwindow_classandvisualset toCopyFromParent. Both
compositeWidgetClassand constraintWidgetClassinherit this realize procedure, and most

new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedureBiseravityin the mask and attributes to

the appropriate value and then create the winder example, depending on its justification,

Label might sebit_gravityto WestGravity , CenterGravity , or EastGravity. Consequently,
shrinking it would just mee the bits appropriatelyand no exposurevent is needed for repaint-

ing.

If a composite widge$' children should be realized in an order other than that specified (to control
the stacking ordefor example), it should caKtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that hae dildren and whose class is not a subclassoofpositeWidgetClassare
responsible for calling{tRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the XliiXCreateWindow function explicitly a realize procedure should nor-
mally call the Intrinsics analo¥tCreateWindow, which simplifies the creation of windows for
widgets.

54

X Toolkit Intrinsics X11 Release 6.4

void XtCreateWindowf, window_classvisual value_maskattributeg
Widgetw;
unsigned intvindow_class
Visual *visuat
XtValueMaskvalue _mask
XSetWindowAttributes attributes

w Specifies the widget that defines the additional winditributed. Muste of
class Core or gnsubclass thereof.

window_class Specifies the Xlib windw class (for examplelnputOutput , InputOnly , or

CopyFromParent).
visual Specifies the visual type (usuallopyFromParent).
value_mask Specifies which fields in thegtributesstructure are used.
attributes Specifies the windme attributes to use in th&CreateWindow call.

The XtCreateWindow function calls the XlibXCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the createdtavthdavidget’s
windowfield.

XtCreateWindow evduates the following fields of the widget core structaiepth screen par-
ent->corewindow X, y, width, height and border_width

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and wirtd$o Thewindowfield may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointetthe parent widget, screen pointard windav of a widget are aailable to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplayw)
Widgetw;,

w Specifies the widget. Must be of class Core grsabclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParentf)
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

55

X Toolkit Intrinsics X11 Release 6.4

Screen *XtScreemny)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

XtScreen returns the screen pointer for the specified widget.

Windav XtWindow(w)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.
Xtwindow returns the winde of the specified widget.

The display pointerscreen pointerand windav of a widget or of the closest widget ancestor of a
nonwidget object arevailable by means oKtDisplayOfObject, XtScreenOfObject, and
XtwindowOfObiject .

Display *XtDisplayOfObject¢bjec)
Widgetobject

object Specifies the object. Must be of class Object grsabclass thereof.
XtDisplayOfObiject is identical in function toXtDisplay if the object is a widget; otherwise

XtDisplayOfObiject returns the display pointer for the nearest ancestobjettthat is of class
Widget or a subclass thereof.

Screen *XtScreenOfObjectjec)
Widgetobject

object Specifies the object. Must be of class Object grsabclass thereof.
XtScreenOfObiject is identical in function toXtScreen if the object is a widget; otherwise

XtScreenOfObiject returns the screen pointer for the nearest ancestijedtthat is of class
Widget or a subclass thereof.

Window XtWindowOfObjectbbjec)
Widgetobject

object Specifies the object. Must be of class Object graabclass thereof.

XtWindowOfObject is identical in function toXtWindow if the object is a widget; otherwise
XtWindowOfObject returns the winde for the nearest ancestoralfjectthat is of class Widget
or a subclass thereof.

56

X Toolkit Intrinsics X11 Release 6.4

To retrieve the instance name of an object, dXdbdlame.

String XtNamegbjec)
Widgetobject

object Specifies the object whose name is desired. Must be of class Objegtsuban
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the namgobfrenm
object’s ancestors.

Several window attributes are locally cached in the widget instance. Thug,ddme be set by the
resource manager andSetValuesas well as used by routines that deriructures from these
values (for exampledepthfor deriving pixmapsbackground_pixefor deriving GCs, and so on)
or in theXtCreateWindow call.

Thex, y, width, height and border_widthwindow attributes are ailable to geometry managers.
These fields are maintained synchronously inside the Intrinsics. Whe@amnfigureWindow

is issued by the Intrinsics on the widgetindow (on request of its parent), these values are
updated immediately rather than some time later when the server gendtatetgareNotify

event. (Infact, most widgets do not seleBtibstructureNotify events.) Thisensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchron@mnfigureNotify events or a consistent, but sip

world in which geometry managers ask the server for windpes wheneer they need to lay out

their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destrgy the windows associated with a widget and its non-pop-up descendantsUnseal-
izeWidget.

void XtUnrealizeWidget)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

If the widget is currently unrealizeXtUnrealizeWidget simply returns. Otherwise it performs
the following:

. Unmanages the widget if the widget is managed.

. Makes a postorder (child-to-parent)visasal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named “unrealizeCall-
back”, executes the procedures on the XtNunrealizeCallback list.

. Destroys the widget'window and ary subwindows by calling<DestroyWindow with the
specified widget’svindowfield.

Any events in the queue or which arei following a call toXtUnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) haer eeisted.

57

X Toolkit Intrinsics X11 Release 6.4

2.8. Destoying Widgets
The Intrinsics provide support

. To destrq all the pop-up children of the widget being destroyed and deatlrohildren of
composite widgets.

. To remove (@nd unmap) the widget from its parent.

. To call the callback procedures thatvedeen registered to trigger when the widget is
destroyed.

. To minimize the number of things a widget has to deallocate when destroyed.
. To minimize the number oKDestroyWindow calls when destroying a widget tree.

To destrgy a widget instance, us¥tDestroyWidget.

void XtDestroyWidget()
Widgetw;

w Specifies the widget. Must be of class Object grsabclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to desyrthemseles. Itcan be called at griime, including from an application
callback routine of the widget being degied. Thisrequires a two-phase destnarocess in

order to &oid dangling references to destroyed widgets.

In phase 1XtDestroyWidget performs the following:
. If thebeing_destroyetleld of the widget isIt ue, it returns immediately.

. Recursvely descends the widget tree and setditbiag_destroyefield to Tr ue for the
widget and all normal and pop-up children.

. Adds the widget to a list of widgets (the degtiist) that should be destroyed when it is
safe to do so.

Entries on the destydist satisfy the imariant that if w2 occurs after wl on the degthst, then
w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that showltliee as a result of the curreneet have keen
called, including all procedures registered with theneand translation managers, that is, when
the current imocation of XtDispatchEvent is about to return, or immediately if not ¥tDis-
patchEvent.

In phase 2XtDestroyWidget performs the following on each entry in the degtist in the
order specified:

. If the widget is not a pop-up child and the widggtrent is a subclass obmposite-
WidgetClass and if the parent is not being destroyed, it cXit8inmanageChild on the
widget and then calls the widgeparents celete_child procedure (see Section 3.3).

. Calls the destrpcallback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes secondvieesal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

. If the widget is not a pop-up child and the widggtirent is a subclass obnstraint-
WidgetClass it calls theConstraintClassPart destry procedure for the parent, then for

58

X Toolkit Intrinsics X11 Release 6.4

the parens auperclass, until finally it calls th€onstraintClassPart destrg procedure for
constraintWidgetClass.

. Calls theCoreClassPartdestry procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the ggztnocedure declared in
the Object class record. Callback lists are deallocated.

. If the widget class object class part contain®©ajectClassExtensionrecord with the
record_typeNULLQ UARK and thedeallocatefield is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

. Calls XDestroyWindow if the specified widget is realized (that is, has an X wiyyddrhe
server recursely destroys all normal descendant wimgo (Wndows of realized pop-up
Shell children, and their descendants, are destroyed by a shell clasg ptestedure.)

2.8.1. Addingand Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destra@allback procedure for the widget. The degteallback procedures use

the mechanism described in Chapter 8. The desaitback list is identified by the resource

name XtNdestroyCallback.

For example, the following adds an application-supplied dgstatiback procedur€lientDe-
stroywith client data to a widget by callingtAddCallback .

XtAddCallbackv, XtNdestroyCallbackClientDestroy client_datg

Similarly, the following remaes the application-supplied desyroallback procedur€lientDe-
stroyby calling XtRemoveCallback.

XtRemaoveCallback(v, XtNdestroyCallbackClientDestroy client_datg

TheClientDestroyargument is of typeXtCallbackProc ; see Section 8.1.

2.8.2. DynamicData Deallocation: The destroy Procedure

The destryg procedure pointers in th®bjectClassPart, RectObjClassPart, and CoreClass-
Part structures are of typ¥tWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Specifies the widget being destroyed.

The destrg procedures are called in subclass-to-superclass. oftierefore, a widget'destroy
procedure should deallocate only storage that is specific to the subclass and should ignore the
storage allocated by wmwf its superclasses. The destprocedure should deallocate only

resources that lra been explicitly created by the subclass.yAesource that was obtained from

the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallogas®eye, the destroy
procedure entry in its class record can be NULL.

59

X Toolkit Intrinsics X11 Release 6.4

Deallocating storage includes, but is not limited to, the following steps:

. Calling XtFree on dynamic storage allocated wittMalloc , XtCalloc, and so on.
. Calling XFreePixmap on pixmaps created with direct X calls.

. Calling XtReleaseGCon GCs allocated witktGetGC.

. Calling XFreeGC on GCs allocated with direct X calls.

. Calling XtRemoveEventHandler on event handlers added to other widgets.

. Calling XtRemoveTimeOut on timers created witKtAppAddTimeOut .

. Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass

During destryg phase 2 for each widget, the Intrinsics remtne widget from the modal cascade,
unregister all eent handlers, reme dl key, keyboard, button, and pointer grabs and reend
callback procedures registered on the widgety dutstanding selection transfers will time out.

2.8.3. DynamicConstraint Data Deallocation: The ConstraintClassPart destroy Procedure

The constraint destyqorocedure identified in th€onstraintClassPart structure is called for a
widget whose parent is a subclassonstraintWidgetClass. This constraint destyoprocedure
pointer is of typeXtWidgetProc. The constraint destygrocedures are called in subclass-to-
superclass ordestarting at the class of the widgeparent and ending aonstraint-

WidgetClass Therefore, a parerst'oionstraint destypprocedure should deallocate only storage
that is specific to the constraint subclass and not storage allocategldfyitarsuperclasses.

If a parent does not need to deallocate @mstraint storage, the constraint degprocedure
entry in its class record can be NULL.

2.8.4. Wdget Instance Deallocation: The deallocate Procedure

The deallocate procedure pointer in thbjectClassExtensionrecord is of typeXtDeallo-
cateProc.

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widgetwidget
XtPointermore_bytes

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory reead from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if @bjectClassExtensionrecord exists in the object class part
exensionfield with record_typeNULLQ UARK and thedeallocatefield is not NULL, the
XtDeallocateProcwill be called. If no ObjectClassPart extension record is declared with
record_typeequal toNULLQ UARK, then XtInheritAllocate and XtinheritDeallocate are

assumed. Theesponsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytedf it is not NULL, to deallocate the constraints record as specified by the widget's
coreconstraintsfield if it is not NULL, and to deallocate the widget instance itself.

If no XtDeallocateProcis found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

60

X Toolkit Intrinsics X11 Release 6.4

2.9. Exiting from an Application

All X Toolkit applications should terminate by callingDestroyApplicationContext and then

exiting using the standard method for their operating system (typib#&lalling exit for

POSIX-based systems). The quickest way toaria& windows disappear while exiting is to call
XtUnmapWidget on each top-kel shell widget. The Intrinsics va& ro resources beyond those

in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitlyydadividual wid-

gets or widget trees witKtDestroyWidget before callingXtDestroyApplicationContext in

order to ensure that mnequired widget cleanup is propertyeeuted. Theapplication deeloper

must refer to the widget documentation to learn if a widget needs to perform cleanup beyond that
performed automatically by the operating system. If the client is a session participant (see Sec-
tion 4.2), then the client may wish to resign from the session befirege SeeSection 4.2.4 for
details.

61

X Toolkit Intrinsics X11 Release 6.4

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclassngpositeWidgetClas3 can hae an
arbitrary number of children. Consequenthgy are responsible for much more than prirti
widgets. Theiresponsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

. Overall management of children from creation to destruction.
. Destruction of descendants when the composite widget is destroyed.

. Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

. Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic proceditGreateWidget and XtDestroyWid-
get. XtCreateWidget adds children to their parent by calling the passinsert_child proce-
dure. XtDestroyWidget removes children from their parent by calling the parertlete child
procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visibleFor example, a composite editor widget supporting multiple editing

buffers might allocate one child widget for each file buffat it might display only a small num-

ber of the existing bédrs. Wdgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and rewed from their parent managed set by usingtManageChild,
XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and XtChangeManaged-

Set, which notify the parent to recalculate the physical layout of its children by calling the par-
ent’s change_managed procedure. TXt€reateManagedWidget corvenience function calls
XtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state whiaie tine ghysi-
cal space but do not shanything. Managedavidgets are not mapped automatically if their
map_when_marged field is False. The default isTrue and is changed by usin{tSetMapped-
WhenManaged

Each composite widget class declares a geometry mamdgeh is responsible for figuring out
where the managed children should appear within the composite widigetow. Geometry
management techniques fall into four classes:

Fixed boxes Fixed boxes hae a fked number of children created by the parent. All
these children are managed, and nome makes geometry manager
requests.

Homogeneous bes Homogeneousoxes treat all children equally and apply the same
geometry constraints to each child. Matients insert and delete wid-
gets freely.

Heterogeneous bes Heterogeneolmxes hae a pecific location where each child is
placed. Thidocation usually is not specified in pixels, because the

62

X Toolkit Intrinsics X11 Release 6.4

window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint.

Shell boxes Shelboxes typically hae anly one child, and the chilgl’'sze is usually
exactly the size of the shell. The geometry manager must communicate
with the windev manageyif it exists, and the box must also accept
ConfigureNotify events when the winde size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: The insert_child Procedure

To add a child to the paremtlist of children, theXtCreateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtwidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the newly created child.

Most composite widgets inherit their superclagperation. Thénsert_child routine irCom-
positeWidgetClassalls and inserts the child at the specified position irchidren list, expand-
ing it if necessary.

Some composite widgets define their own insert_child routine so tlyataherder their children
in some cowenient way create companion controller widgets for ameidget, or limit the num-
ber or class of their child widget& composite widget class that wishes towallwnwidget chil-
dren (see Chapter 12) must specifg¢@mpositeClassExtensiorextension record as described in
Section 1.4.2.1 and set thecepts_objectield in this record talr ue. If the CompositeClas-
sExtensionrecord is not specified or tlaecepts_objectield is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert awehild in thechildren array (that isnum_childreris

equal tonum_slot} the insert_child procedure must first reallocate the array and update
num_slots The insert_child procedure then places the child at the appropriate position in the
array and increments tmeim_childrerfield.

3.2. Insertion Order of Children: The insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kpt. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc .

63

X Toolkit Intrinsics X11 Release 6.4

typedef Cardinal (*XtOrderProc)(Widget);
Widgetw;

w Passes the newly created widget.

Composite widgets that alloclients to order their children (usually homogeneous boxes) can call
their widget instance’insert_position procedure from the classsert_child procedure to deter-
mine where a ne child should go in ithildren array Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different insert_posi-
tion procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicatesary children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returningnum_childrerindicates that it should go after all other children. The default
insert_position function returmsim_childrerand can bewerridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletionof Children: The delete_child Procedure

To remove the child from the parentthildren list, the XtDestroyWidget function ezentually
causes a call to the Composite paedtiss delete_child procedure. The delete_child procedure
pointer is of typexXtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure teedrmase companion
widgets.

3.4. Addingand Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or thelremo
of widgets from a composite widgetranaged set. These generic routinemtially call the
composite widge$ change_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of fWidgetProc. The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. ManagingChildren

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, ustManageChildren.

64

X Toolkit Intrinsics X11 Release 6.4

typedef Widget *WidgetList;

void XtManageChildrerghildren, num_childre
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectObyaulbn
class thereof.
num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

. Issues an error if the children do not alvd#ne same parent or if the paramass is not a
subclass otompositeWidgetClass

. Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

. If the parent is realized and after all childremehbeen marked, it makes some of the newly
managed children wesble:

- Calls the change_managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
- Maps each previously unmanaged child thathags_when_marged Tr ue.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children wiansged field

is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, callXtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and rgotéschildren. It moes

each child as needed by calliXgMo veWidget, which first updates theandy fields and which

then callsXMoveWindow.

If the composite widget wishes to change the size or border widtly of &s children, it calls
XtResizeWidget, which first updates thwidth, height and border_widthfields and then calls
XConfigureWindow. Simultaneous repositioning and resizing may be done Xti@onfig-
ureWidget; see Section 6.6.

To add a single child to its parent widgetet of managed children, ud¢ManageChild.

void XtManageChild¢hild)
Widgetchild;

child Specifies the child. Must be of class RectObj graubclass thereof.

The XtManageChild function constructs &VidgetList of length 1 and callXtManageChil-
dren.

To aeate and manage a child widget in a single proceduret@eateManagedWidget or
XtVaCreateManagedWidget.

65

X Toolkit Intrinsics X11 Release 6.4

Widget XtCreateManagedWidget{ime widget_classparent args hum_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArgList args
Cardinalnum_args
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or ary subclass thereof.

parent Specifies the parent widget. Must be of class Compositeyasudielass thereof.
args Specifies the argument list teapride ary other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a comenience routine that call§tCreateWidget
and XtManageChild.

Widget XtVaCreateManagedWidges{me widget_classparent ...)
Stringname
WidgetClasavidget_class
Widgetparent
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or ary subclass thereof.

parent Specifies the parent widget. Must be of class Compositey@audclass thereof.
Specifieshe variable argument list taoverride ary other resource specifications.

XtVaCreateManagedWidgetis identical in function toXtCreateManagedWidget with the
argsandnum_argarameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. UnmanagingChildren
To remove a Ist of children from a parent widgstimanaged list, us&tUnmanageChildren.

void XtUnmanageChildrewrhildren, num_childrei
WidgetListchildren;
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectObyaulbn
class thereof.
num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

66

X Toolkit Intrinsics X11 Release 6.4

. Returns immediately if the common parent is being destroyed.

. Issues an error if the children do not alddhe same parent or if the parent is not a sub-
class ofcompositeWidgetClass

. For each unique child on the listtUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

- Marks the child as unmanaged.
- If the child is realized and tmeap_when_margad field is Tr ue, it is unmapped.

. If the parent is realized and ifyachildren hae become unmanaged, calls the change_man-
aged routine of the widgets’ parent.

XtUnmanageChildren does not destgothe child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children agin. To destrgy widgets entirelyXtDestroyWidget should be called instead; see Sec-
tion 2.9.

To remove a ngle child from its parent widgethmanaged set, usstUnmanageChild.

void XtUnmanageChildghild)
Widgetchild;

child Specifies the child. Must be of class RectObj grsabclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and cxignman-
ageChildren.

These functions are lowue routines that are used by generic composite widget building rou-
tines. Inaddition, composite widgets can provide widget-specific, higél-t®rnvenience proce-
dures.

3.4.3. BundlingChanges to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.

In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate wocations of the change_managed method, one to unmanage and the other to manage,
or in just a single wocation.

To smultaneously remee from and add to the geometry-managed set of children of a composite
parent, useXtChangeManagedSet

67

X Toolkit Intrinsics X11 Release 6.4

void XtChangeManagedSetimanae_children num_unmange_children

do_change_praclient_data
manaje_children num_mange _children
WidgetListunmanage_children
Cardinalnum_unmange_children
XtDoChangeProdo_change_prac
XtPointerclient_data
WidgetListmanaye children
Cardinalnum_mange children

unmange_children Specifies the list of widget children to initially remeofrom the

managed set.

num_unmange_children Specifies the number of entries in themange_childrenlist.

do_change_proc Specifies a procedure tovoske ketween unmanaging and managing
the children, or NULL.

client_data Specifies client data to be passed to the do_change_proc.

manaye_children Specifies the list of widget children to finally add to the managed
set.

num_mange_children Specifies the number of entries in thanaye_childrenlist.

The XtChangeManagedSetfunction performs the following:

Returns immediately itum_unmange_childrenandnum_mange_childrenare both O.
Issues a warning and returns if the widgets specified imémage_childrenand the

unmanae_childrenlists do not all hae the same parent or if that parent is not a subclass of

compositeWidgetClass

Returns immediately if the common parent is being destroyed.

If do_change_prois not NULL and the parent€ompositeClassExtension
allows_change mamad_seffield is False, then XtChangeManagedSetperforms the fol-
lowing:

- Calls XtUnmanageChildren (unmange_children num_unmange_children).

- Calls thedo_change_prac

- Calls XtManageChildren (manae_children num_mange_children).

Otherwise, the following is performed:

- For each child on thenmanae_childrenlist; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged, and if it is realized and its
map_when_marmged field is Tr ue, it is unmapped.

- If do_change_pros non-NULL, the procedure isvoked.

- For each child on thmanaye_childrenlist; if the child is already managed or is
being destroyed, it is ignored; otherwise it is marked as managed.

- If the parent is realized and after all childremehbeen marked, the change _managed
method of the parent isvoked, and subsequently some of the newly managed chil-
dren are made weable by callingXtRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_marged True.

68

X Toolkit Intrinsics X11 Release 6.4

If no CompositeClassExtensionecord is found in the pareattomposite class paettension
field with record typeNULLQ UARK and version greater than 1, anXiftnheritChangeMan-
agedwas ecified in the parerst’dass record during class initialization, the value of the
allows_change_mamgad_seffield is inherited from the superclass. The value inherited from
compositeWidgetClasdor theallows_change margad_setffield is False.

Itis not an error to include a child in both tlemange_childrenand themanage_childrenlists.
The effect of such a call is that the child remains managed following the call, but the
do_change_prots able to affect the child while it is in an unmanaged state.

Thedo_change_prots of type XtDoChangeProc.

typedef void (*XtDoChangeProc)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widgetcomposite_parent
WidgetListunmange_children
Cardinal num_unmange_children
WidgetListmanaye children
Cardinal "num_mange children
XtPointerclient_data

composite_parent Passes the composite parent whose managed set is being altered.
unmange_children Passes the list of children just rewsol from the managed set.
num_unmange children Passes the number of entries in tirenanae_childrenlist.
manae_children Passes the list of children about to be added to the managed set.
num_mange_children Passes the number of entries in thanaye_childrenlist.

client_data Passes the client data passeXt€hangeManagedSet

Thedo_change_proprocedure is used by the callerXiChangeManagedSetto male dhanges

to one or more children at the point when the managed set contains the fewest entries. These
changes may immlve geometry requests, and in this case the calletGhangeManagedSet

may take advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children withoutvoking the parens geometry managerTo achieve this advantage,

if the do_change_proprocedure changes the geometry of a child or of a descendant of a child,
then that child should be included in tnemange_childrenandmanage_childrenlists.

3.4.4. Determiningif a Widget Is Managed
To determine the managed state of\aegichild widget, useXtisManaged.

Boolean XtlsManage#(
Widgetw;

W Specifies the widget. Must be of class Object grsamclass thereof.

The XtlsManaged function returnsTr ue if the specified widget is of class RectObj oy anb-
class thereof and is managed Fatse otherwise.

69

X Toolkit Intrinsics X11 Release 6.4

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. Hoarethis behavior can beverridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_marged field to False.

To change the value of awgin widget'smap_when_margd field, usexXtSetMappedWhen-
Managed.

void XtSetMappedWhenManaged(map_when_maruged)
Widgetw;
Booleanmap_when_margd;

w Specifies the widget. Must be of class Core grsabclass thereof.

map_when_margged
Specifies a Boolean value that indicates thve vadue that is stored into the wid-
get'smap_when_margd field.

If the widget is realized and managed, amdé@ip_when_mamgd is Tr ue, XtSetMapped-
WhenManaged maps the winde. If the widget is realized and managed, and if
map_when_mared is False, it unmaps the winde. XtSetMappedWhenManagedis a con-
venience function that is equaient to (but slightly faster than) callingtSetValuesand setting

the naev value for the XtNmappedWhenManaged resource then mapping the widget as appropri-
ate. Asan alternatie o using XtSetMappedWhenManagedto control mapping, a client may
setmapped_when_maged to False and useXtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitlyuse XtMapWidget .

XtMapWidget{w)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

To unmap a widget explicitlyuse XtUnmapWidget.

XtUnmapWidgetg)
Widgetw;

w Specifies the widget. Must be of class Core grsabclass thereof.

3.6. ConstrainedComposite Widgets

The Constraint widget class is a subclassafhpositeWidgetClass The name is dered from

the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allav the child to occupor can be as complicated assother children should

change if this child is mad or resized. Constraintidgets let a parent define constraints as

70

X Toolkit Intrinsics X11 Release 6.4

resources that are supplied for their childrEor example, if the Constraint parent defines the
maximum sizes for its children, thesewngze resources are retviedl for each child as if they
were resources that were defined by the child widgietss. Accordinglyconstraint resources
may be included in the argument list or resource file justail ather resource for the child.

Constraint widgets hva dl the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has @onstraintsfield, which is the address of a parent-specific structure that
contains constraint information about the child. If a chifgirent does not belong to a subclass
of constraintWidgetClass, then the child'sonstraintsfield is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. © dlow this, widget writers should define the constraint records in theaterih file by

using the same cuentions as used for widget recordsor example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-
lows:

typedef struct {
Dimension max_width, max_height;
} M axConstraintPart;

typedef struct {
MaxConstraintPart max;
} M axConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;
} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} M axMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part heeraleentries that facilitate this. All entries

in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but thg are called wheneer actions are performed on the parsrdiildren.

The XtCreateWidget function uses theonstraint_sizdield in the parens dass record to allo-

cate a constraint record when a child is creab¢iCreateWidget also uses the constraint

resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields thawvade deri

from constraint resources and can possiblyenmw resize the child to conform to thevgn con-

straints.

When theXtGetValues and XtSetValuesfunctions are xecuted on a child, theuse the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValuesthen calls the constraint set_values procedures so that the parent can recompute
derived constraint fields and nve a resize the child as appropriate. If a Constraint widget class

71

X Toolkit Intrinsics X11 Release 6.4

or ary of its superclasses V@ ceclared aConstraintClassExtensionrecord in theConstraint-
ClassPart exensionfields with a record type diULLQ UARK and theget_values_hookeld in

the extension record is non-NULKtGetValues calls the get_values_hook procedure(s) to allow
the parent to return deed constraint fields.

The XtDestroyWidget function calls the constraint desgrprocedure to deallocate ydynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destygrocedure XtDestroyWidget does this automatically.

72

X Toolkit Intrinsics X11 Release 6.4

Chapter 4

Shell Widgets

Shell widgets hold an applicati@bp-level widgets to aller them to communicate with the win-
dow manager and session managséhnells hae been designed to be as nearly invisible as possi-
ble. Clientshave o create them, but tlyeshould neer haveto worry about their sizes.

If a shell widget is resized from the outside (typically by a windwmnager), the shell widget

also resizes its managed child widget automatic&iyilarly, if the shells child widget needs to
change size, it can mala ggometry request to the shell, and the shell negotiates the size change
with the outer evironment. Clientshould neer attempt to change the size of their shells

directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the wind@mnager
(for example, pop-up menu shells).

TransientShell Used for shell windows that & the WM_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-iesl windows (for example, gnadditional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main topAgwindow that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main topvi@ window that the winde manager

identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shellwidget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains themWidgets at the top of the hierayctio not have parent widgets. Instead, thenust

deal with the outside avld. To provide for this, each top+el widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allav a widget to aoid the geometry clipping imposed by the parent-child windelation-
ship. Theg aso can provide a layer of communication with the wimaeanager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclasscoimpositeWidgetClass

73

X Toolkit Intrinsics X11 Release 6.4

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

WMShell A subclass of Shell; contains fields needed by the common wingm-
ager protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal topel@vindows.

ApplicationShell A subclass of TopLedShell; may be used for an applicatisatiditional
root windows.

SessionShell A subclass of ApplicationShell; used for an applicasamin root win-
dow.

Note that the classes Shell, WMShell, and VVendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TegBkell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClass&rt Definitions

Only the Shell class has additional class fields, which are all containedShe¢H€lassExten-
sionRec None of the other Shell classewv@any aditional class fields:

typedef struct {
XtPointer extension;
} ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are:

74

X Toolkit Intrinsics

typedef struct _ShellClassRec {
CoreClassirt
CompositeClassitt
ShellClassBrt

} ShellClassRec;

typedef struct {
XtPointer
XrmQuark
long
Cardinal
XtGeometryHandler

X11 Release 6.4

core_class;
composite_class;
shell_class;

Se&ection 1.6.12

See Section 1.6.12
Se&ection 1.6.12
See Section 1.6.12
See below

net_extension;

record_type;

\ersion;

record_size;
root_geometry_manager;

} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {

CoreClassirt

CompositeClassit

ShellClassBrt

OverrideShellClassit
} OverrideShellClassRec;

typedef struct _ WMShellClassRec {
CoreClassrt
CompositeClassitt
ShellClassBrt
WMShellClassart

} WMShellClassRec;

core_class;
composite_class;
shell_class;
override_shell _class;

core_class;
composite_class;
shell_class;
wm_shell_class;

typedef struct _VendorShellClassRec {

CoreClassrt

CompositeClassitt

ShellClassBrt

WMShellClassart

VendorShellClass#t
} VendorShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;

typedef struct _TransientShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClassRart

VendorShellClassftt

TransientShellClassit
} TransientShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
transient_shell_class;

75

X Toolkit Intrinsics

X11 Release 6.4

typedef struct _ToplhwlShellClassRec {

CoreClassért

CompositeClassitt

ShellClassBrt

WMShellClassRart

VendorShellClassétt

TopLevelShellClassBrt
} TopLevelShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;

typedef struct _ApplicationShellClassRec {

CoreClass@rt
CompositeClassitt
ShellClassBrt
WMShellClasshart
VendorShellClass#tt
TopLevelShellClassBrt
ApplicationShellClassirt
} A pplicationShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;
application_shell_class;

typedef struct _SessionShellClassRec {

CoreClassért
CompositeClassitt
ShellClassBrt
WMShellClassRart
VendorShellClassftt
TopLevelShellClassBrt
ApplicationShellClass#tt
SessionShellClasai

} SessionShellClassRec;

core_class;
composite_class;
shell_class;
wm_shell_class;
vendor_shell_class;
top_leel_shell_class;
application_shell_class;
session_shell_class;

76

X Toolkit Intrinsics X11 Release 6.4

The single occurrences of the class records and pointers for creating instances of shells are:

extern ShellClassRec shellClassRec;

extern OverrideShellClassRevarideShellClassRec;

extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;
extern TopLeelShellClassRec toplvelShellClassRec;

extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClasswerrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass tophelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;
extern WidgetClass sessionShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types \ariables

ShellWidget shellWidgetClass
OverrideShellWidget overideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellwidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellwWidgetClass
WMShellWidgetClass
VendorShellwWidgetClass
TransientShellwidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appghelich and
ShellP.h. VendorShell has separate public andabei .h files which are included t8hell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access pviate data in ayof the Shell instance or class data structures.

77

X Toolkit Intrinsics X11 Release 6.4

The symbolic constant for tHehellClassExtensionversion identifier isXtShellExtensionVer-
sion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls eithakeGeometryRequestor
XtMakeResizeRequestthe root_geometry _manager procedurevskad to negotiate the new
geometry with the winde manager If the windav manager permits the wegeometry the
root_geometry_manager procedure should reXa@eometryYes; if the windav manager

denies the geometry request or does not change thewvgeonetry within some timeout inter-
val (equal towm_timeoutn the case of WMShells), the root_geometry _manager procedure
should returnXtGeometryNo. If the windav manager makes some altermatgeometry change,
the root_geometry_manager procedure may return effi@eometryNo and handle the new
geometry as a resize gtGeometryAlmost in anticipation that the shell will accept the compro-
mise. Ifthe compromise is not accepted, thevisze must then be handled as a resize. Sub-
classes of Shell that wish to provide their own root_geometry_manager procedures are strongly
encouraged to useaoping to irnvoke their superclass’root_geometry _manager procedure
under most situations, as the wimdmanager interaction may be very complex.

If no ShellClassPartextension record is declared witbcord_typeequal toNULLQ UARK , then
XtInheritRootGeometryManager is assumed.

4.1.2. ShellRrt Definition

The various shell widgets ¥ the following additional instance fields defined in their widget
records:

78

X Toolkit Intrinsics

typedef struct {
String
XtCreatePopupChildProc
XtGrabKind
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
XtCallbackList
XtCallbackList
Visual *

} ShellPart;

typedef struct {
int
} OverrideShellPart;

typedef struct {
String
int
Boolean
Boolean
Boolean
Widget
String
struct _OldXSizeHints {
long
int
int
int
int
int
struct {
int
int

geometry;

create_popup_child_proc;

grab_kind;
spring_loaded;
popped_up;

a

llov_shell_resize;

client_specified;
see_under;
verride_redirect;
popup_callback;
popden_callback;
visual;

empty;

title;

wm_timeout;
vait_for_wm;
transient;
ugency;
client_leader;
windav_role;

flags;

X

' Ys

width, height;
min_width,min_height;
max_width,max_height;
width_inc,height_inc;

X,
Y,

} min_aspect, max_aspect;

} size_hints;
XWMHints
int
Atom

} WMShellPart;

typedef struct {
int
} VendorShellPart;

typedef struct {
Widget

wm_hints;
base_widthbase height, win_gravity;
title_encoding;

vendor_specific;

transient_for;

79

X11 Release 6.4

-

X Toolkit Intrinsics

} TransientShellPart;

typedef struct {
String
Boolean
Atom

} TopLevelShellPart;

typedef struct {
char *
XrmClass
int
char **
} A pplicationShellPart;

typedef struct {
SmcConn
String
String *
String *
String *
String *
String *
String *
String
String
unsigned char
Boolean
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList
XtCallbackList

} SessionShellPart;

X11 Release 6.4

icon_name;
iconic;
icon_name_encoding;

class;
xrm_class;

amgc;

argv;

connection;
session_id;
restart_command;
clone_command,;
discard_command;
resign_command;
shutdown_command;
environment;
current_dir;
program_path;

restart_style;
join_session;
sae_callbacks;
interact_callbacks;
cancel_callbacks;
sae_complete_callbacks;
die_callbacks;
error_callbacks;

80

X Toolkit Intrinsics X11 Release 6.4

The full shell widget instance record definitions are:

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;

} ShellRec, *ShellWidget;

typedef struct {
CoreRart core;
CompositefBrt composite;
ShellRart shell;
OverrideShellBrt override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CoreFRart core,;
Compositert composite;
ShellRart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CoreRart core;
CompositeRrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TransientShellBrt transient;

} TransientShellRec, *TransientShellWidget;

typedef struct {
CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLeelShellwidget;

81

X Toolkit Intrinsics X11 Release 6.4

typedef struc{

CoreFRart core;
Compositefrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRurt vendor;
TopLevelShellRart topLevel;
ApplicationShellRrt application;

} A pplicationShellRec, *ApplicationShellWidget;

typedef struc{

CoreRart core;
CompositeBrt composite;
ShellRart shell;
WMShellPart wm;
VendorShellRrt vendor;
TopLevelShellPart topLeve;
ApplicationShellRrt application;
SessionShellt session;

} SessionShellRec, *SessionShellWidget;

4.1.3. ShelResources

The resource names, classes, and representation types specifieshiglltblassReaesource list
are:

Name Class Representation
XtNallowShellResize XtCAllavShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProcXtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOgrrideRedirect XtRBoolean
XtNpopdavnCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSseUnder XtRBoolean
XtNvisual XtCMsual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specifiagrinshellClassRec
resource list are:

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWdth XtCBaseVitith XtRInt
XtNclientLeader XtCClientLeader XtRWidget

82

X Toolkit Intrinsics

XtNheightinc
XtNiconMask
XtNiconPixmap
XtNiconWindow
XtNiconX
XtNiconY
XtNinitialState
XtNinput
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNtitle
XtNtitleEncoding
XtNtransient
XtNwaitforwm, XtNwaitForWWm
XtNwidthinc
XtNwindowRole
XtNwinGravity
XtNwindowGroup
XtNwmTimeout
XtNurgeny

XtCHeightinc
XtClconMask
XtClconPixmap
XtClconWindav
XtClconX
XtClconY
XtClnitialState
XtClnput
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWdth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCTitle
XtCTtleEncoding
XtCTansient
XtCWaitforwm, XtCWaitForwm
XtCWidthinc
XtCWindowRole
XtCWinGravity
XtCWndowGroup
XtCWmTmeout
XtCUrgeny

X11 Release 6.4

XtRInt
XtRBitmap
XtRBitmap
XtRWindow
XtRInt
XtRInt
XtRInitialState
XtRBool
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRInt
XtRString
XtRAtom
XtRBoolean
XtRBoolean
XtRInt
XtRString
XtRGravity
XtRVindow
XtRInt
XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specifitreriniémg-
ShellClassReaesource list are:

Name Class Representation

XtNtransientfor XtCTransientier XtRWidget

The resource names, classes, and representation types that are specifiepiretiShell-

ClassRecreso