
X Synchronization Extension Protocol

Version 3.0

X Consortium Standard

X Version 11, Release 6.4

Tim Glauert
thg@cam-orl.co.uk

Olivetti Research / MultiWorks

Dave Carver
dcc@athena.mit.edu

Digital Equipment Corporation,
MIT / Project Athena

Jim Gettys
jg@crl.dec.com

Digital Equipment Corporation,
Cambridge Research Laboratory

David P. Wiggins
dpw@x.org

X Consortium, Inc.

Copyright 1991 by Olivetti Research Limited, Cambridge, England and
Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify, and distribute this documentation for any purpose

and without fee is hereby granted, provided that the above copyright notice appear

in all copies. Olivetti, Digital, MIT, and the X Consortium make no representations

about the suitability for any purpose of the information in this document. This

documentation is provided as is without express or implied warranty.

Copyright (c) 1991 X Consortium, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

1



WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used

in advertising or otherwise to promote the sale, use or other dealings in this

Software without prior written authorization from the X Consortium.

2



1 Synchronization Protocol

The core X protocol makes no guarantees about the relative order of
execution of requests for different clients. This means that any
synchronization between clients must be done at the client level in an
operating system-dependent and network-dependent manner. Even if there
was an accepted standard for such synchronization, the use of a network
introduces unpredictable delays between the synchronization of the clients and
the delivery of the resulting requests to the X server.

The core X protocol also makes no guarantees about the time at which
requests are executed, which means that all clients with real-time constraints
must implement their timing on the host computer. Any such timings are
subject to error introduced by delays within the operating system and
network and are inefficient because of the need for round-trip requests that
keep the client and server synchronized.

The synchronization extension provides primitives that allow synchronization
between clients to take place entirely within the X server. This removes any
error introduced by the network and makes it possible to synchronize clients
on different hosts running different operating systems. This is important for
multimedia applications, where audio, video, and graphics data streams are
being synchronized. The extension also provides internal timers within the X
server to which client requests can be synchronized. This allows simple
animation applications to be implemented without any round-trip requests
and makes best use of buffering within the client, network, and server.

1.1 Description

The mechanism used by this extension for synchronization within the X server
is to block the processing of requests from a client until a specific
synchronization condition occurs. When the condition occurs, the client is
released and processing of requests continues. Multiple clients may block on
the same condition to give inter-client synchronization. Alternatively, a single
client may block on a condition such as an animation frame marker.

The extension adds Counter and Alarm to the set of resources managed by
the server. A counter has a 64-bit integer value that may be increased or
decreased by client requests or by the server internally. A client can block by
sending an Await request that waits until one of a set of synchronization
conditions, called TRIGGERs, becomes TRUE.

The CreateCounter request allows a client to create a Counter that can be
changed by explicit SetCounter and ChangeCounter requests. These can

3



be used to implement synchronization between different clients.

There are some counters, called System Counters, that are changed by the
server internally rather than by client requests. The effect of any change to a
system counter is not visible until the server has finished processing the
current request. In other words, system counters are apparently updated in
the gaps between the execution of requests rather than during the actual
execution of a request. The extension provides a system counter that
advances with the server time as defined by the core protocol, and it may also
provide counters that advance with the real-world time or that change each
time the CRT screen is refreshed. Other extensions may provide their own
extension-specific system counters.

The extension provides an Alarm mechanism that allows clients to receive an
event on a regular basis when a particular counter is changed.

1.2 Types

Please refer to the X11 Protocol specification as this document uses syntactic
conventions established there and references types defined there.

The following new types are used by the extension.

INT64: 64-bit signed integer
COUNTER: XID
VALUETYPE: {Absolute,Relative}
TESTTYPE: {PositiveTransition,NegativeTransition,

PositiveComparison,NegativeComparison}
TRIGGER: [

counter:COUNTER,
value-type:VALUETYPE,
wait-value:INT64,
test-type:TESTTYPE
]

WAITCONDITION: [
trigger:TRIGGER,
event-threshold:INT64
]

SYSTEMCOUNTER: [
name:STRING8,
counter:COUNTER,
resolution:INT64
]

ALARM: XID

4



ALARMSTATE: {Active,Inactive,Destroyed}

The COUNTER type defines the client-side handle on a server Counter. The
value of a counter is an INT64.

The TRIGGER type defines a test on a counter that is either TRUE or
FALSE. The value of the test is determined by the combination of a test
value, the value of the counter, and the specified test-type.

The test value for a trigger is calculated using the value-type and wait-value
fields when the trigger is initialized. If the value-type field is not one of the
named VALUETYPE constants, the request that initialized the trigger will
return a Value error. If the value-type field is Absolute, the test value is
given by the wait-value field. If the value-type field is Relative, the test value
is obtained by adding the wait-value field to the value of the counter. If the
resulting test value would lie outside the range for an INT64, the request that
initialized the trigger will return a Value error. If counter is None and the
value-type is Relative, the request that initialized the trigger will return a
Match error. If counter is not None and does not name a valid counter, a
Counter error is generated.

If the test-type is PositiveTransition, the trigger is initialized to FALSE,
and it will become TRUE when the counter changes from a value less than
the test value to a value greater than or equal to the test value. If the
test-type is NegativeTransition, the trigger is initialize to FALSE, and it
will become TRUE when the counter changes from a value greater than the
test value to a value less than or equal to the test value. If the test-type is
PositiveComparison, the trigger is TRUE if the counter is greater than or
equal to the test value and FALSE otherwise. If the test-type is
NegativeComparison, the trigger is TRUE if the counter is less than or
equal to the test value and FALSE otherwise. If the test-type is not one of the
named TESTTYPE constants, the request that initialized the trigger will
return a Value error. A trigger with a counter value of None and a valid
test-type is always TRUE.

The WAITCONDITION type is simply a trigger with an associated
event-threshold. The event threshold is used by the Await request to decide
whether or not to generate an event to the client after the trigger has become
TRUE. By setting the event-threshold to an appropriate value, it is possible
to detect the situation where an Await request was processed after the
TRIGGER became TRUE, which usually indicates that the server is not
processing requests as fast as the client expects.

The SYSTEMCOUNTER type provides the client with information about a
System Counter. The name field is the textual name of the counter that

5



identifies the counter to the client. The counter field is the client-side handle
that should be used in requests that require a counter. The resolution field
gives the approximate step size of the system counter. This is a hint to the
client that the extension may not be able to resolve two wait conditions with
test values that differ by less than this step size. A microsecond clock, for
example, may advance in steps of 64 microseconds, so a counter based on this
clock would have a resolution of 64.

The only system counter that is guaranteed to be present is called
SERVERTIME, which counts milliseconds from some arbitrary starting
point. The least significant 32 bits of this counter track the value of Time
used by the server in Events and Requests. Other system counters may be
provided by different implementations of the extension. The X Consortium
will maintain a registry of system counter names to avoid collisions in the
name space.

An ALARM is the client-side handle on an Alarm resource.

1.3 Errors

Counter

This error is generated if the value for a COUNTER argument in a
request does not name a defined COUNTER.

Alarm

This error is generated if the value for an ALARM argument in a
request does not name a defined ALARM.

1.4 Requests

Initialize

version-major,version-minor: CARD8
⇒
version-major,version-minor: CARD8

This request must be executed before any other requests for this
extension. If a client violates this rule, the results of all SYNC requests
that it issues are undefined. The request takes the version number of the
extension that the client wishes to use and returns the actual version
number being implemented by the extension for this client. The
extension may return different version numbers to a client depending of
the version number supplied by that client. This request should be
executed only once for each client connection.

6



Given two different versions of the SYNC protocol, v1 and v2, v1 is
compatible with v2 if and only if v1.version major = v2.version major
and v1.version minor ≤ v2.version minor. Compatible means that the
functionality is fully supported in an identical fashion in the two
versions.

This document describes major version 3, minor version 0 of the SYNC
protocol.

ListSystemCounters

⇒
system-counters: LISTofSYSTEMCOUNTER

Errors: Alloc

This request returns a list of all the system counters that are available
at the time the request is executed, which includes the system counters
that are maintained by other extensions. The list returned by this
request may change as counters are created and destroyed by other
extensions.

CreateCounter
id: COUNTER
initial-value: INT64

Errors: IDChoice,Alloc

This request creates a counter and assigns the specified id to it. The
counter value is initialized to the specified initial-value and there are no
clients waiting on the counter.

DestroyCounter

counter: COUNTER

Errors: Counter,Access

This request destroys the given counter and sets the counter fields for all
triggers that specify this counter to None. All clients waiting on the
counter are released and a CounterNotify event with the destroyed
field set to TRUE is sent to each waiting client, regardless of the
event-threshold. All alarms specifying the counter become Inactive and
an AlarmNotify event with a state field of Inactive is generated. A
counter is destroyed automatically when the connection to the creating
client is closed down if the close-down mode is Destroy. An Access
error is generated if counter is a system counter. A Counter error is
generated if counter does not name a valid counter.

QueryCounter

7



counter: COUNTER
⇒
value: INT64

Errors: Counter

This request returns the current value of the given counter or a
generates Counter error if counter does not name a valid counter.

Await
wait-list: LISTofWAITCONDITION

Errors: Counter,Alloc,Value

When this request is executed, the triggers in the wait-list are initialized
using the wait-value and value-type fields, as described in the definition
of TRIGGER above. The processing of further requests for the client is
blocked until one or more of the triggers becomes TRUE. This may
happen immediately, as a result of the initialization, or at some later
time, as a result of a subsequent SetCounter, ChangeCounter or
DestroyCounter request.

A Value error is generated if wait-list is empty.

When the client becomes unblocked, each trigger is checked to determine
whether a CounterNotify event should be generated. The difference
between the counter and the test value is calculated by subtracting the
test value from the value of the counter. If the test-type is
PositiveTransition or PositiveComparison, a CounterNotify
event is generated if the difference is at least event-threshold. If the
test-type is NegativeTransition or NegativeComparison, a
CounterNotify event is generated if the difference is at most
event-threshold. If the difference lies outside the range for an INT64, an
event is not generated.

This threshold check is made for each trigger in the list and a
CounterNotify event is generated for every trigger for which the check
succeeds. The check for CounterNotify events is performed even if one
of the triggers is TRUE when the request is first executed. Note that a
CounterNotify event may be generated for a trigger that is FALSE if
there are multiple triggers in the request. A CounterNotify event with
the destroyed flag set to TRUE is always generated if the counter for
one of the triggers is destroyed.

ChangeCounter

counter: COUNTER
amount: INT64

Errors: Counter,Access,Value

8



This request changes the given counter by adding amount to the current
counter value. If the change to this counter satisfies a trigger for which a
client is waiting, that client is unblocked and one or more
CounterNotify events may be generated. If the change to the counter
satisfies the trigger for an alarm, an AlarmNotify event is generated
and the alarm is updated. An Access error is generated if counter is a
system counter. A Counter error is generated if counter does not name
a valid counter. If the resulting value for the counter would be outside
the range for an INT64, a Value error is generated and the counter is
not changed.

It should be noted that all the clients whose triggers are satisfied by this
change are unblocked, so this request cannot be used to implement
mutual exclusion.

SetCounter
counter: COUNTER
value: INT64

Errors: Counter,Access

This request sets the value of the given counter to value. The effect is
equivalent to executing the appropriate ChangeCounter request to
change the counter value to value. An Access error is generated if
counter names a system counter. A Counter error is generated if
counter does not name a valid counter.

CreateAlarm
id: ALARM
values-mask: CARD32
values-list: LISTofVALUE

Errors: IDChoice,Counter,Match,Value,Alloc

This request creates an alarm and assigns the identifier id to it. The
values-mask and values-list specify the attributes that are to be
explicitly initialized. The attributes for an Alarm and their defaults are:

Attribute Type Default
trigger TRIGGER counter None

value-type Absolute
value 0
test-type PositiveComparison

delta INT64 1
events BOOL TRUE

The trigger is initialized as described in the definition of TRIGGER,
with an error being generated if necessary.

9



If the counter is None, the state of the alarm is set to Inactive, else it
is set to Active.
Whenever the trigger becomes TRUE, either as a result of this
request or as the result of a SetCounter, ChangeCounter,
DestroyCounter, or ChangeAlarm request, an AlarmNotify event
is generated and the alarm is updated. The alarm is updated by
repeatedly adding delta to the value of the trigger and reinitializing it
until it becomes FALSE. If this update would cause value to fall outside
the range for an INT64, or if the counter value is None, or if the delta
is 0 and test-type is PositiveComparison or NegativeComparison,
no change is made to value and the alarm state is changed to Inactive
before the event is generated. No further events are generated by an
Inactive alarm until a ChangeAlarm or DestroyAlarm request is
executed.
If the test-type is PositiveComparison or PositiveTransition and
delta is less than zero, or if the test-type is NegativeComparison or
NegativeTransition and delta is greater than zero, a Match error is
generated.
The events value enables or disables delivery of AlarmNotify events to
the requesting client. The alarm keeps a separate event flag for each
client so that other clients may select to receive events from this alarm.
An AlarmNotify event is always generated at some time after the
execution of a CreateAlarm request. This will happen immediately if
the trigger is TRUE, or it will happen later when the trigger becomes
TRUE or the Alarm is destroyed.

ChangeAlarm
id: ALARM
values-mask: CARD32
values-list: LISTofVALUE

Errors: Alarm,Counter,Value,Match
This request changes the parameters of an Alarm. All of the parameters
specified for the CreateAlarm request may be changed using this
request. The trigger is reinitialized and an AlarmNotify event is
generated if appropriate, as explained in the description of the
CreateAlarm request.
Changes to the events flag affect the event delivery to the requesting
client only and may be used by a client to select or deselect event
delivery from an alarm created by another client.
The order in which attributes are verified and altered is
server-dependent. If an error is generated, a subset of the attributes
may have been altered.

10



DestroyAlarm

alarm: ALARM

Errors: Alarm

This request destroys an alarm. An alarm is automatically destroyed
when the creating client is closed down if the close-down mode is
Destroy. When an alarm is destroyed, an AlarmNotify event is
generated with a state value of Destroyed.

QueryAlarm

alarm: ALARM
⇒
trigger: TRIGGER
delta: INT64
events: ALARMEVENTMASK
state: ALARMSTATE

Errors: Alarm

This request retrieves the current parameters for an Alarm.

SetPriority

client-resource: XID
priority: INT32

Errors: Match

This request changes the scheduling priority of the client that created
client-resource. If client-resource is None, then the priority for the
client making the request is changed. A Match error is generated if
client-resource is not None and does not name an existing resource in
the server. For any two priority values, A and B, A is higher priority if
and only if A is greater than B.

The priority of a client is set to 0 when the initial client connection is
made.

The effect of different client priorities depends on the particular
implementation of the extension, and in some cases it may have no effect
at all. However, the intention is that higher priority clients will have
their requests executed before those of lower priority clients.

For most animation applications, it is desirable that animation clients be
given priority over nonrealtime clients. This improves the smoothness of
the animation on a loaded server. Because a server is free to implement
very strict priorities, processing requests for the highest priority client to
the exclusion of all others, it is important that a client that may
potentially monopolize the whole server, such as an animation that

11



produces continuous output as fast as it can with no rate control, is run
at low rather than high priority.

GetPriority

client-resource: XID
⇒
priority: INT32

Errors: Match

This request returns the scheduling priority of the client that created
client-resource. If client-resource is None, then the priority for the
client making the request is returned. A Match error is generated if
client-resource is not None and does not name an existing resource in
the server.

1.5 Events

CounterNotify

counter: COUNTER
wait-value: INT64
counter-value: INT64
time: TIMESTAMP
count: CARD16
destroyed: BOOL

CounterNotify events may be generated when a client becomes
unblocked after an Await request has been processed. The wait-value is
the value being waited for, and counter-value is the actual value of the
counter at the time the event was generated. The destroyed flag is
TRUE if this request was generated as the result of the destruction of
the counter and FALSE otherwise. The time is the server time at which
the event was generated.

When a client is unblocked, all the CounterNotify events for the
Await request are generated contiguously. If count is 0, there are no
more events to follow for this request. If count is n, there are at least n
more events to follow.

AlarmNotify

alarm: ALARM
counter-value: INT64
alarm-value: INT64
state: ALARMSTATE
time: TIMESTAMP

12



An AlarmNotify event is generated when an alarm is triggered.
alarm-value is the test value of the trigger in the alarm when it was
triggered, counter-value is the value of the counter that triggered the
alarm, and time is the server time at which the event was generated.
The state is the new state of the alarm. If state is Inactive, no more
events will be generated by this alarm until a ChangeAlarm request is
executed, the alarm is destroyed, or the counter for the alarm is
destroyed.

2 Encoding

Please refer to the X11 Protocol Encoding document as this section uses
syntactic conventions established there and references types defined there.

The name of this extension is “SYNC”.

2.1 New Types

The following new types are used by the extension.

ALARM: CARD32
ALARMSTATE:

0 Active
1 Inactive
2 Destroyed

COUNTER: CARD32
INT64: 64-bit signed integer
SYSTEMCOUNTER:

4 COUNTER counter
8 INT64 resolution
2 n length of name in bytes
n STRING8 name
p pad,p=pad(n+2)

TESTTYPE:
0 PositiveTransition
1 NegativeTransition
2 PositiveComparison
3 NegativeComparison

TRIGGER:
4 COUNTER counter
4 VALUETYPE wait-type
8 INT64 wait-value

13



4 TESTTYPE test-type
VALUETYPE:

0 Absolute
1 Relative

WAITCONDITION:
20 TRIGGER trigger
8 INT64 event threshold

An INT64 is encoded in 8 bytes with the most significant 4 bytes first
followed by the least significant 4 bytes. Within these 4-byte groups, the byte
ordering determined during connection setup is used.

2.2 Errors

Counter
1 0 Error
1 Base + 0 code
2 CARD16 sequence number
4 CARD32 bad counter
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

Alarm
1 0 Error
1 Base + 1 code
2 CARD16 sequence number
4 CARD32 bad alarm
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

2.3 Requests

Initialize
1 CARD8 major opcode
1 0 minor opcode
2 2 request length
1 CARD8 major version
1 CARD8 minor version
2 unused

14



⇒
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 CARD8 major version
1 CARD8 minor version
2 unused
20 unused

ListSystemCounters
1 CARD8 major opcode
1 1 minor opcode
2 1 request length

⇒
1 1 Reply
1 unused
2 CARD16 sequence number
4 variable reply length
4 INT32 list length
20 unused
4n list of SYSTEMCOUNTER system counters

CreateCounter
1 CARD8 major opcode
1 2 minor opcode
2 4 request length
4 COUNTER id
8 INT64 initial value

DestroyCounter
1 CARD8 major opcode
1 6 minor opcode∗

2 2 request length
4 COUNTER counter

QueryCounter
1 CARD8 major opcode
1 5 minor opcode∗

2 2 request length
4 COUNTER counter

⇒
∗A previous version of this document gave an incorrect minor opcode.

15



1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
8 INT64 counter value
16 unused

Await
1 CARD8 major opcode
1 7 minor opcode∗

2 1 + 7*n request length
28n LISTofWAITCONDITION wait conditions

ChangeCounter
1 CARD8 major opcode
1 4 minor opcode∗

2 4 request length
4 COUNTER counter
8 INT64 amount

SetCounter
1 CARD8 major opcode
1 3 minor opcode∗

2 4 request length
4 COUNTER counter
8 INT64 value

CreateAlarm
1 CARD8 major opcode
1 8 minor opcode
2 3+n request length
4 ALARM id
4 BITMASK values mask

#x00000001 counter
#x00000002 value-type
#x00000004 value
#x00000008 test-type
#x00000010 delta
#x00000020 events

4n LISTofVALUE values
VALUES

4 COUNTER counter

∗A previous version of this document gave an incorrect minor opcode.

16



4 VALUETYPE value-type
8 INT64 value
4 TESTTYPE test-type
8 INT64 delta
4 BOOL events

ChangeAlarm
1 CARD8 major opcode
1 9 minor opcode
2 3+n request length
4 ALARM id
4 BITMASK values mask

encodings as for CreateAlarm
4n LISTofVALUE values

encodings as for CreateAlarm

DestroyAlarm
1 CARD8 major opcode
1 11 minor opcode∗

2 2 request length
4 ALARM alarm

QueryAlarm
1 CARD8 major opcode
1 10 minor opcode∗

2 2 request length
4 ALARM alarm

⇒
1 1 Reply
1 unused
2 CARD16 sequence number
4 2 reply length
20 TRIGGER trigger
8 INT64 delta
1 BOOL events
1 ALARMSTATE state
2 unused

SetPriority
1 CARD8 major opcode
1 12 minor opcode
2 3 request length

∗A previous version of this document gave an incorrect minor opcode.

17



4 CARD32 id
4 INT32 priority

GetPriority
1 CARD8 major opcode
1 13 minor opcode
2 1 request length
4 CARD32 id

⇒
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 INT32 priority
20 unused

2.4 Events

CounterNotify
1 Base + 0 code
1 0 kind
2 CARD16 sequence number
4 COUNTER counter
8 INT64 wait value
8 INT64 counter value
4 TIMESTAMP timestamp
2 CARD16 count
1 BOOL destroyed
1 unused

AlarmNotify
1 Base + 1 code
1 1 kind
2 CARD16 sequence number
4 ALARM alarm
8 INT64 counter value
8 INT64 alarm value
4 TIMESTAMP timestamp
1 ALARMSTATE state
3 unused

18


